Truncated triakis tetrahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with triakis truncated tetrahedron.
Truncated triakis tetrahedron
Truncated triakis tetrahedron
Conway notation t6kT
Faces 4 hexagons
12 pentagons
Edges 42
Vertices 28
Dual Hexakis truncated tetrahedron
Vertex configuration 4 (5.5.5)
24 (5.5.6)
Symmetry group Td
Properties convex

The truncated triakis tetrahedron is a convex polyhedron with 16 faces: 4 sets of 3 pentagons arranged in a tetrahedral arrangement, with 4 hexagons in the gaps. It is constructed from taking a triakis tetrahedron by truncating the order-6 vertices. This creates 4 regular hexagon faces, and leaves 12 irregular pentagons.

A topologically similar equilateral polyhedron can be constructed by using 12 regular pentagons with 4 equilateral but nonplanar hexagons, each vertex with internal angles alternating between 108 and 132 degrees.

Full truncation[edit]

If all of a triakis tetrahedron's vertices, of both kinds, are truncated, the resulting solid is an irregular icosahedron, whose dual is a trihexakis truncated tetrahedron.

Truncation of only the simpler vertices yields what looks like a tetrahedron with each face raised by a low triangular frustum. The dual to that truncation will be the triakis truncated tetrahedron.

The full truncation

See also[edit]

External links[edit]