Tunnell's theorem

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In number theory, Tunnell's theorem gives a partial resolution to the congruent number problem, and under the Birch and Swinnerton-Dyer conjecture, a full resolution.

Congruent number problem[edit]

The congruent number problem asks which positive integers can be the area of a right triangle with all three sides rational. Tunnell's theorem relates this to the number of integral solutions of a few fairly simple Diophantine equations.


For a given square-free integer n, define

A_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 2x^2 + y^2 + 32z^2 \} \\
B_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 2x^2 + y^2 + 8z^2 \} \quad \\
C_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 8x^2 + 2y^2 + 64z^2 \} \\
D_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 8x^2 + 2y^2 + 16z^2 \}.

Tunnell's theorem states that supposing n is a congruent number, if n is odd then 2An = Bn and if n is even then 2Cn = Dn. Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for elliptic curves of the form y^2 = x^3 - n^2x, these equalities are sufficient to conclude that n is a congruent number.


The theorem is named for Jerrold B. Tunnell, a number theorist at Rutgers University, who proved it in 1983.


The importance of Tunnell's theorem is that the criterion it gives is testable by a finite calculation. For instance, for a given n, the numbers An,Bn,Cn,Dn can be calculated by exhaustively searching through x,y,z in the range -\sqrt{n},\ldots,\sqrt{n}.