Turnstile antenna

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An axial-mode turnstile antenna for 136-137 MHz LEO weather satellites comprising a single turnstile crossed dipole above a passive set of dipoles serving as a reflector.

A turnstile antenna is a radio antenna consisting of a set of two identical dipole antennas aligned at right angles to each other and fed in phase quadrature; the two currents applied to the dipoles are 90° out of phase.[1][2] The name reflects the notion the antenna looks like a turnstile when mounted horizontally. The turnstile antenna is often referred to as crossed dipoles.[3] The antenna can be used in two possible modes. In normal mode the antenna radiates horizontally polarized radio waves perpendicular to its axis. In axial mode the antenna radiates circularly polarized radiation along its axis.


The turnstile antenna was invented by George Brown in 1935[1] and described in scholarship in 1936.[4] The patent history reveals the popularity of the turnstile antenna over the years.[5]


High gain axial mode Yagi turnstile array used to communicate with weather satellites on 136-137 MHz at Bedu, Belgium. Each component of the array consists of two 9-element Yagi antennas mounted on the same axis at right angles and fed in quadrature to radiate a narrow beam of circularly polarized radio waves

The antenna can be used in two different modes: normal mode and axial mode.[citation needed]

Normal mode[edit]

In directions perpendicular to its axis the antenna radiates linearly polarized radio waves (horizontally polarized when the antenna's axis is vertical). This is called normal mode. The radiation pattern, a superposition of the two dipole patterns, is close to omnidirectional but actually "cloverleaf shaped", with four small maxima off the ends of the elements. The pattern departs from omnidirectional by only ±5 percent.[2] The radiation in these horizontal directions is often increased by vertically stacking multiple turnstile antennas (called "bays") fed in phase. This increases the gain in horizontal directions but causes partial cancellation of the radiation in vertical directions. These stacked normal mode turnstile antennas are used at VHF and UHF frequencies for FM and television broadcasting.

Since the first turnstiles invented by Brown operated in this mode, the normal mode turnstile is occasionally called the George Brown turnstile antenna.[2]

Axial mode[edit]

Off the ends of the antenna's axis, perpendicular to the plane of the elements, the antenna radiates circularly-polarized (CP) radio waves. This is called axial mode. The radiation off one end is righthand-circularly-polarized and the other end is lefthand-circularly-polarized. Which end produces which polarization is determined by the phase of the feed connections. Since in a directional antenna only a single beam is wanted, a flat conducting surface such as a metal screen reflector is often added, a half wavelength under the crossed elements.[3] The waves in that direction are reflected back and the reflection reverses the polarization sense, so they reinforce the forward radiation.[3] Addition of the reflector increases the axial radiation by a factor of 2 (3 dB). Another common way to increase the axial mode radiation is to replace each dipole with a Yagi array. In a circularly polarized antenna, it is important that the direction of polarization of the transmitting and receiving antennas be the same, since a right-circularly-polarized antenna will suffer a severe loss of gain receiving left-circularly-polarized radio waves, and vice versa.

Axial mode turnstile antennas are often used for satellite and missile antennas,[6] since circular polarization is used in satellite communication.[citation needed] This is because with circularly polarized waves the relative orientation of the antenna elements does not affect the gain.

Feeding the antenna[edit]

Turnstile array for portable military communication terminal

The fundamental requirement for the turnstile to function is ensuring each dipole's currents are of equal magnitude and in phase quadrature.[2] This is done with feed-line techniques or by adding reactance in series with the dipoles.[2]

Quadrature feed[edit]

A popular method of feeding the two dipoles in a turnstile antenna is to split the RF signal from the transmission line into two equal signals with a two way splitter, then delay one by 90 degrees additional electrical length. Each phase is applied to one of the dipoles.[2]

Modified dipole dimensions[edit]

By modifying the length and shape of the dipoles, the combined terminal impedance presented to a single feed-point can achieve pure resistance and yield quadrature currents in each dipole.[2][6] This method of changing the physical dimensions of the antenna element to yield quadrature currents is known as turnstile feeding.[3]

Popular Turnstile Configurations[edit]

Horizontal Omni Arrays[edit]

The original purpose of the George Brown turnstile antennas was providing a horizontally polarized signal in all directions from a transmitting location.[1] To this end, the original patent describes arranging multiple copies of the basic turnstile cross dipole pair, one above the other and feeding all with RF power.[2][1]

Batwing Arrays[edit]

Main article: Batwing antenna

A later innovation involved changing the crossed dipole to a set of orthogonal large area antenna elements.[7] The batwing turnstile is popular for VHF broadcasting.[8] The batwing shape of each element produces an antenna with wide impedance bandwidth.[3] This antenna is most often arranged into vertical arrays similar to the George Brown turnstile array and is well known as the superturnstile antenna.[2][3] The wide bandwidth is beneficial to VHF lowband high bandwidth transmissions such as broadcast television.[3]

Satellite and Missile/Rocket Antenna[edit]

The benefits of circular polarization between moving objects justifies considering the axial mode of the turnstile antenna.[citation needed]

The US Nike missile program made use of the axial mode for telemetry and used the modified dipole technique to force the quadrature currents.[6]

External links[edit]


  1. ^ a b c d Brown, George. "US Patent 2086976". Antenna system. Retrieved 14 January 2014.  filed: September 20, 1935; granted: July 13, 1937
  2. ^ a b c d e f g h i Kraus, John (1988). "16: Antennas for Special Applications: Feeding Applications". Antennas (2nd ed.). McGraw-Hill, Inc. pp. 726–729. ISBN 0-07-035422-7. 
  3. ^ a b c d e f g Milligan, Thomas (2005). "5 - Dipoles, Slots and Loops". Modern Antenna Design (2nd ed.). Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 231–237. ISBN 978-0-471-45776-3. 
  4. ^ Brown, George (April 1936). "The Turnstile Antenna". Electronics. 
  5. ^ "Patents about Turnstile Antennas". 
  6. ^ a b c Martin, John (1952). "[Missile] Antenna". Retrieved 15 January 2014. 
  7. ^ Masters, Robert (1945). "[Batwing] Antenna". Retrieved 15 January 2014. 
  8. ^ Whitaker, Jerry (1996). "Antennas for Specific Applications". In Jerry Whitaker. The Electronics Handbook. CRC Press, Inc. p. 1341. ISBN 0-8493-8345-5. The turnstile is the earliest and most popular resonant antenna for VHF broadcasting.