Two-point tensor

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Double vector" redirects here. For dual vectors, see dual space. For bivectors, see bivector.

Two-point tensors, or double vectors, are tensor-like quantities which transform as vectors with respect to each of their indices and are used in continuum mechanics to transform between reference ("material") and present ("configuration") coordinates.[1] Examples include the deformation gradient and the first Piola–Kirchhoff stress tensor.

As with many applications of tensors, Einstein summation notation is frequently used. To clarify this notation, capital indices are often used to indicate reference coordinates and lowercase for present coordinates. Thus, a two-point tensor will have one capital and one lower-case index; for example, AjM.

Continuum mechanics[edit]

A conventional tensor can be viewed as a transformation of vectors in one coordinate system to other vectors in the same coordinate system. In contrast, a two-point tensor transforms vectors from one coordinate system to another. That is, a conventional tensor,


actively transforms a vector u to a vector v such that

where v and u are measured in the same space and their coordinates representation is with respect to the same basis (denoted by the "e").

In contrast, a two-point tensor, G will be written as

and will transform a vector, U, in E system to a vector, v, in the e system as


The transformation law for two-point tensor[edit]

Suppose we have two coordinate systems one primed and another unprimed and a vectors' components transform between them as


For tensors suppose we then have


A tensor in the system . In another system, let the same tensor be given by


We can say



is the routine tensor transformation. But a two-point tensor between these systems is just

which transforms as


The most mundane example of a two-point tensor[edit]

The most mundane example of a two-point tensor is the transformation tensor, the Q in the above discussion. Note that


Now, writing out in full,

and also


This then requires Q to be of the form


By definition of tensor product,

So we can write


Incorporating (1), we have


See also[edit]

External links[edit]


  1. ^ Humphrey, Jay D. Cardiovascular solid mechanics: cells, tissues, and organs. Springer Verlag, 2002.