Unconventional superconductor

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Unconventional superconductors are materials that display superconductivity which does not conform to either the conventional BCS theory or Nikolay Bogolyubov's theory or its extensions.


The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich.[1] For a long time it was believed that CeCu2Si2 is a singlet d-wave superconductor but recently, it has become clear that this is not correct.[2] In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13,[3] UPt3 [4] and URu2Si2.[5] In each of these materials, the anisotropic nature of the pairing is implicated by the power-law dependence of the nuclear magnetic resonance (NMR) relaxation rate and specific heat capacity on temperature. The presence of nodes in the superconducting gap of UPt3 was confirmed in 1986 from the polarization dependence of the ultrasound attenuation.[6]

The first unconventional triplet superconductor, organic material (TMTSF)2PF6, was discovered by Denis Jerome and Klaus Bechgaard in 1979.[7] Recent experimental works by Paul Chaikin's and Michael Naughton's groups as well as theoretical analysis of their data by Andrei Lebed have firmly confirmed unconventional nature of superconducting pairing in (TMTSF)2X (X=PF6, ClO4, etc.) organic materials.[8]

High-temperature singlet d-wave superconductivity was discovered by J.G. Bednorz and K.A. Müller in 1986, who discovered that the lanthanum-based cuprate perovskite material LaBaCuO4 develops superconductivity at a critical temperature (Tc) of approximately 35 K (-238 degrees Celsius). This is well above the highest critical temperature known at the time (Tc = 23 K) and thus the new family of materials were called high-temperature superconductors. Bednorz and Müller received the Nobel prize in Physics for this discovery in 1987. Since then, many other high-temperature superconductors have been synthesized.

LSCO (La2−xSrxCuO4) was discovered the same year (1986). Soon after, in January 1987, YBCO was discovered to have a Tc of 90 K, the first material to achieve superconductivity above the boiling point of liquid nitrogen (77 K).[9] This is highly significant from the point of view of the technological applications of superconductivity, because liquid nitrogen is far less expensive than liquid helium, which is required to cool conventional superconductors down to their critical temperature. In 1988 BSCCO with Tc up to 107 K,[10] and TBCCO (T=thallium) with Tc of 125 K were discovered. The current record critical temperature is about Tc = 133 K (−140 °C) at standard pressure, and somewhat higher critical temperatures can be achieved at high pressure. Nevertheless, at present it is considered unlikely that cuprate perovskite materials will achieve room-temperature superconductivity.

On the other hand, in recent years other unconventional superconductors have been discovered. These include some that do not superconduct at high temperatures, such as the strontium ruthenate oxide compounds, but that, like the high-temperature superconductors, are unconventional in other ways (for example, the origin of the attractive force leading to the formation of Cooper pairs may be different from the one postulated in BCS theory). In addition to this, superconductors that have unusually high values of Tc but that are not cuprate perovskites have been discovered. Some of them may be extreme examples of conventional superconductors (this is suspected of magnesium diboride, MgB2, with Tc = 39 K). Others display more unconventional features.

In 2008 a new class (layered oxypnictide superconductors), for example LaOFeAs, were discovered that do not include copper.[11][12][13] An oxypnictide of samarium seems to have a Tc of about 43 K which is higher than predicted by BCS theory.[14] Tests at up to 45 T[15][16] suggest the upper critical field of LaFeAsO0.89F0.11 may be around 64 T. Some other iron-based superconductors do not contain oxygen.

As of 2009, the highest-temperature superconductor (at ambient pressure) is mercury barium calcium copper oxide (HgBa2Ca2Cu3Ox), at 138 K and is held by a cuprate-perovskite material,[17] possibly 164 K under high pressure.[18]

Recently, other unconventional superconductors, not based on cuprate structure, have been discovered.[19] Some have unusually high values of the critical temperature, Tc, and hence they are sometimes also called high-temperature superconductors.


In 2017, scanning tunnelling microscopy and spectroscopy experiments on graphene proximitized to the electron-doped (non-chiral) d-wave superconductor Pr2−xCexCuO4 (PCCO) revealed evidence for an unconventional superconducting density of states induced in graphene.[20] Publications in March of 2018 provided evidence for unconventional superconducting properties of a graphene bilayer where one layer was offset by a "magic angle" of 1.1° relative to the other.[21]

Ongoing research[edit]

After more than twenty years of intensive research the origin of high-temperature superconductivity is still not clear, but it seems that instead of electron-phonon attraction mechanisms, as in conventional superconductivity, one is dealing with genuine electronic mechanisms (e.g. by antiferromagnetic correlations), and instead of s-wave pairing, d-waves are substantial.

One goal of all this research is room-temperature superconductivity.[22]

The question of how superconductivity arises in high-temperature superconductors is one of the major unsolved problems of theoretical condensed matter physics as of 2016. The mechanism that causes the electrons in these crystals to form pairs is not known.

Despite intensive research and many promising leads, an explanation has so far eluded scientists. One reason for this is that the materials in question are generally very complex, multi-layered crystals (for example, BSCCO), making theoretical modeling difficult.

Possible mechanism[edit]

The most controversial topic in condensed matter physics has been the mechanism for high-Tc superconductivity (HTS). There have been two representative theories on the HTS : (See also Resonating valence bond theory )

Weak-coupling theory
Firstly, it has been suggested that the HTS emerges by antiferromagnetic spin fluctuation in a doped system.[23] According to this weak-coupling theory, the pairing wave function of the HTS should have a dx2y2 symmetry. Thus, whether the symmetry of the pairing wave function is the d symmetry or not is essential to demonstrate on the mechanism of the HTS in respect of the spin fluctuation. That is, if HTS order parameter (pairing wave function) does not have d symmetry, then a pairing mechanism related to spin fluctuation can be ruled out. The tunnel experiment (see below) seems to detect d symmetry in some HTS.
Interlayer coupling model
Secondly, there was the interlayer coupling model, according to which a layered structure consisting of BCS-type (s symmetry) superconductor can enhance the superconductivity by itself.[24] By introducing an additional tunneling interaction between each layer, this model successfully explained the anisotropic symmetry of the order parameter in the HTS as well as the emergence of the HTS.

Thus, in order to solve this unsettled problem, there have been numerous experiments such as photoelectron spectroscopy, NMR, specific heat measurement, etc. Unfortunately, the results were ambiguous, where some reports supported the d symmetry for the HTS but others supported the s symmetry.[citation needed] This muddy situation possibly originated from the indirect nature of the experimental evidence, as well as experimental issues such as sample quality, impurity scattering, twinning, etc.

Previous studies on the symmetry of the HTS order parameter[edit]

The symmetry of the HTS order parameter has been studied in nuclear magnetic resonance measurements and, more recently, by angle-resolved photoemission and measurements of the microwave penetration depth in a HTS crystal. NMR measurements probe the local magnetic field around an atom and hence reflect the susceptibility of the material. They have been of special interest for the HTS materials because many researchers have wondered whether spin correlations might play a role in the mechanism of the HTS.

NMR measurements of the resonance frequency on YBCO indicated that electrons in the copper oxide superconductors are paired in spin-singlet states. This indication came from the behavior of the Knight shift, the frequency shift that occurs when the internal field is different from the applied field: In a normal metal, the magnetic moments of the conduction electrons in the neighborhood of the ion being probed align with the applied field and create a larger internal field. As these metals go superconducting, electrons with oppositely directed spins couple to form singlet states. In the anisotropic HTS, perhaps NMR measurements have found that the relaxation rate for copper depends on the direction of the applied static magnetic field, with the rate being higher when the static field is parallel to one of the axes in the copper oxide plane. While this observation by some group supported the d symmetry of the HTS, other groups could not observe it.

Also, by measuring the penetration depth, the symmetry of the HTS order parameter can be studied. The microwave penetration depth is determined by the superfluid density responsible for screening the external field. In the s wave BCS theory, because pairs can be thermally excited across the gap Δ, the change in superfluid density per unit change in temperature goes as exponential behavior, exp(-Δ/kBT). In that case, the penetration depth also varies exponentially with temperature T. If there are nodes in the energy gap as in the d symmetry HTS, electron pair can more easily be broken, the superfluid density should have a stronger temperature dependence, and the penetration depth is expected to increase as a power of T at low temperatures. If the symmetry is specially dx2-y2 then the penetration depth should vary linearly with T at low temperatures. This technique is increasingly being used to study superconductors and is limited in application largely by the quality of available single crystals.

Photoemission spectroscopy also could provide information on the HTS symmetry. By scattering photons off electrons in the crystal, one can sample the energy spectra of the electrons. Because the technique is sensitive to the angle of the emitted electrons one can determine the spectrum for different wave vectors on the Fermi surface. However, within the resolution of the angle-resolved photoemission spectroscopy (ARPES), researchers could not tell whether the gap goes to zero or just gets very small. Also, ARPES are sensitive only to the magnitude and not to the sign of the gap, so it could not tell if the gap goes negative at some point. This means that ARPES cannot determine whether the HTS order parameter has the d symmetry or not.

Junction experiment supporting the d-wave symmetry[edit]

There was a clever experimental design to overcome the muddy situation. An experiment based on pair tunneling and flux quantization in a three-grain ring of YBa2Cu3O7 (YBCO) was designed to test the symmetry of the order parameter in YBCO. [25] Such a ring consists of three YBCO crystals with specific orientations consistent with the d-wave pairing symmetry to give rise to a spontaneously generated half-integer quantum vortex at the tricrystal meeting point. Furthermore, the possibility that junction interfaces can be in the clean limit (no defects) or with maximum zig-zag disorder was taken into account in this tricrystal experiment.[25] A proposal of studying vortices with half magnetic flux quanta in heavy-fermion superconductors in three polycrystalline configurations was reported in 1987 by V. B. Geshkenbein, A. Larkin and A. Barone in 1987.[26]

In the first tricrystal pairing symmetry experiment [25], the spontaneous magnetization of half flux quantum was clearly observed in YBCO, which convincingly supported the d-wave symmetry of the order parameter in YBCO. Because YBCO is orthorhombic, it might inherently have an admixture of s-wave symmetry. So, by tuning their technique further, it was found that there was an admixture of s-wave symmetry in YBCO within about 3%.[27] Also, it was demonstrated by Tsuei, Kirtley et al. that there was a pure dx2-y2 order parameter symmetry in the tetragonal Tl2Ba2CuO6.[28]


  1. ^ Steglich, F.; Aarts, J.; Bredl, C.D.; Lieke, W.; Meschede, D.; Franz, W.; Schäfer, H. (1979). "Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2". Physical Review Letters. 43 (25): 1892–1896. Bibcode:1979PhRvL..43.1892S. doi:10.1103/PhysRevLett.43.1892.
  2. ^ Kittaka, Shunichiro; Aoki, Yuya; Shimura, Yasuyuki; Sakakibara, Toshiro; Seiro, Silvia; Geibel, Christoph; Steglich, Frank; Ikeda, Hiroaki; Machida, Kazushige (2014-02-12). "Multiband Superconductivity with Unexpected Deficiency of Nodal Quasiparticles in ${\mathrm{CeCu}}_{2}{\mathrm{Si}}_{2}$". Physical[permanent dead link] Review Letters. 112 (6): 067002. arXiv:1307.3499. Bibcode:2014PhRvL.112f7002K. doi:10.1103/PhysRevLett.112.067002. PMID 24580704.
  3. ^ Ott, H. R.; Rudigier, H.; Fisk, Z.; Smith, J. (1983). "UBe_{13}: An Unconventional Actinide Superconductor". Physical Review Letters. 50 (20): 1595–1598. Bibcode:1983PhRvL..50.1595O. doi:10.1103/PhysRevLett.50.1595.
  4. ^ Stewart, G. R.; Fisk, Z.; Willis, J. O.; Smith, J. L. (1984). "Possibility of Coexistence of Bulk Superconductivity and Spin Fluctuations in UPt3". Physical Review Letters. 52 (8): 679–682. Bibcode:1984PhRvL..52..679S. doi:10.1103/PhysRevLett.52.679.
  5. ^ Palstra, T. T. M.; Menovsky, A. A.; Berg, J. van den; Dirkmaat, A. J.; Kes, P. H.; Nieuwenhuys, G. J.; Mydosh, J. A. (1985). "Superconducting and Magnetic Transitions in the Heavy-Fermion System URu_{2}Si_{2}". Physical Review Letters. 55 (24): 2727–2730. Bibcode:1985PhRvL..55.2727P. doi:10.1103/PhysRevLett.55.2727. PMID 10032222.
  6. ^ Shivaram, B. S.; Jeong, Y. H.; Rosenbaum, T.F.; Hinks, D. (1986). "Anisotropy of Transverse Sound in the Heavy-Fermion Superconductor UPt3". Physical Review Letters. 56 (10): 1009. Bibcode:1986PhRvL..56.1078S. doi:10.1103/PhysRevLett.56.1078. PMID 10032562.
  7. ^ Jérome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. (1980). "Superconductivity in a synthetic organic conductor (TMTSF)2PF 6". Journal de Physique Lettres. 41 (4): 95. doi:10.1051/jphyslet:0198000410409500.
  8. ^ Bechgaard, Klaus; Carneiro, Claus S.; Olsen, Malte; Rasmussen, Finn; Jacobsen, Claus (1981). "Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4]" (PDF). Physical Review Letters. 46 (13): 852. Bibcode:1981PhRvL..46..852B. doi:10.1103/PhysRevLett.46.852.
  9. ^ K. M. Wu; et al. (1987). "Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure". Phys. Rev. Lett. 58 (9): 908–910. Bibcode:1987PhRvL..58..908W. doi:10.1103/PhysRevLett.58.908. PMID 10035069.
  10. ^ H. Maeda; Y. Tanaka; M. Fukutumi & T. Asano (1988). "A New High-Tc Oxide Superconductor without a Rare Earth Element". Jpn. J. Appl. Phys. 27: L209–L210. Bibcode:1988JaJAP..27L.209M. doi:10.1143/JJAP.27.L209.
  11. ^ Hiroki Takahashi, Kazumi Igawa, Kazunobu Arii, Yoichi Kamihara, Masahiro Hirano, Hideo Hosono; Igawa; Arii; Kamihara; Hirano; Hosono (2008). "Superconductivity at 43K in an iron-based layered compound LaO1−xFxFeAs". Nature. 453 (7193): 376–378. Bibcode:2008Natur.453..376T. doi:10.1038/nature06972. PMID 18432191.
  12. ^ "Iron Exposed as High-Temperature Superconductor: Scientific American". Sciam.com. 2008-04-23. Retrieved 2009-10-29.
  13. ^ New High-Temperature Superconductors Are Iron-based With Unusual Magnetic Properties
  14. ^ Samarium oxypnictide
  15. ^ High-temp superconductors pave way for 'supermagnets'[permanent dead link]
  16. ^ Hunte, F.; Jaroszynski, J.; Gurevich, A.; Larbalestier, D. C.; Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; et al. (2008). "Very High Field Two-band Superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields". Nature. 453 (7197): 903–5. Bibcode:2008Natur.453..903H. doi:10.1038/nature07058. PMID 18509332.
  17. ^ P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin and D. F. Lu (1995). "Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution". Physica C. 243 (3–4): 201–206. Bibcode:1995PhyC..243..201D. doi:10.1016/0921-4534(94)02461-8.
  18. ^ L. Gao; Y. Y. Xue; F. Chen; Q. Xiong; R. L. Meng; D. Ramirez; C. W. Chu; J. H. Eggert & H. K. Mao (1994). "Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures". Phys. Rev. B. 50 (6): 4260–4263. Bibcode:1994PhRvB..50.4260G. doi:10.1103/PhysRevB.50.4260.
  19. ^ Hiroki Takahashi, Kazumi Igawa, Kazunobu Arii, Yoichi Kamihara, Masahiro Hirano, Hideo Hosono; Igawa; Arii; Kamihara; Hirano; Hosono (2008). "Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs". Nature. 453 (7193): 376–378. Bibcode:2008Natur.453..376T. doi:10.1038/nature06972. PMID 18432191.
  20. ^ Di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; Fazio, D. De; Yoon, D. (2017-01-19). "p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor". Nature Communications. 8: 14024. arXiv:1702.01572. Bibcode:2017NatCo...814024D. doi:10.1038/ncomms14024. ISSN 2041-1723.
  21. ^ Gibney, Elizabeth (5 March 2018). "Surprise graphene discovery could unlock secrets of superconductivity". News. Nature. 555: 151&ndash, 2. Bibcode:2018Natur.555..151G. doi:10.1038/d41586-018-02773-w. Physicists now report that arranging two layers of atom-thick graphene so that the pattern of their carbon atoms is offset by an angle of 1.1º makes the material a superconductor.
  22. ^ A. Mourachkine (2004). Room-Temperature Superconductivity. Cambridge International Science Publishing. arXiv:cond-mat/0606187. Bibcode:2006cond.mat..6187M. ISBN 1-904602-27-4.
  23. ^ P. Monthoux; Balatsky, A.; Pines, D.; et al. (1992). "Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides". Phys. Rev. B. 46 (22): 14803. Bibcode:1992PhRvB..4614803M. doi:10.1103/PhysRevB.46.14803.
  24. ^ S. Chakravarty; Sudbo, A.; Anderson, P. W.; Strong, S.; et al. (1993). "Interlayer Tunneling and Gap Anisotropy in High-Temperature Superconductors". Science. 261 (5119): 337–40. Bibcode:1993Sci...261..337C. doi:10.1126/science.261.5119.337. PMID 17836845.
  25. ^ a b c C. C. Tsuei; Kirtley, J. R.; Chi, C. C.; Yu-Jahnes, Lock See; Gupta, A.; Shaw, T.; Sun, J. Z.; Ketchen, M. B.; et al. (1994). "Pairing Symmetry and Flux Quantization in a Tricrystal Ring of Superconductin YBa2Cu3O7- delta". Phys. Rev. Lett. 73 (6511): 593. Bibcode:1994PhRvL..73..593T. doi:10.1038/373225a0.
  26. ^ V. B. Geshkenbein; Larkin, A.; Barone, A.; et al. (1987). "Vortices with half magnetic flux quanta in heavy-fermion superconductors". Phys. Rev. B. 36: 235–238. Bibcode:1987PhRvB..36..235G. doi:10.1103/PhysRevB.36.235. PMID 9942041.
  27. ^ J. R. Kirtley; Tsuei, C. C.; Ariando, A.; Verwijs, C. J. M.; Harkema, S.; Hilgenkamp, H.; et al. (2006). "Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7-delta". Nat. Phys. 2 (3): 190. Bibcode:2006NatPh...2..190K. doi:10.1038/nphys215.
  28. ^ C. C. Tsuei; Kirtley, J. R.; Ren, Z. F.; Wang, J. H.; Raffy, H.; Li, Z. Z.; et al. (1997). "Pure dx2 – y2 order-parameter symmetry in the tetragonal superconductor TI2Ba2CuO6+delta". Nature. 387 (6632): 481. Bibcode:1997Natur.387..481T. doi:10.1038/387481a0.