Let denote a random vector (corresponding to the measurements), taken from a parametrized family of probability density functions or probability mass functions, which depends on the unknown deterministic parameter . The parameter space is partitioned into two disjoint sets and . Let denote the hypothesis that , and let denote the hypothesis that .
The binary test of hypotheses is performed using a test function with a reject region (a subset of measurement space).
meaning that is in force if the measurement and that is in force if the measurement .
Note that is a disjoint covering of the measurement space.
The Karlin–Rubin theorem can be regarded as an extension of the Neyman–Pearson lemma for composite hypotheses.[1] Consider a scalar measurement having a probability density function parameterized by a scalar parameter θ, and define the likelihood ratio .
If is monotone non-decreasing, in , for any pair (meaning that the greater is, the more likely is), then the threshold test:
where is chosen such that
is the UMP test of size α for testing
Note that exactly the same test is also UMP for testing
Although the Karlin-Rubin theorem may seem weak because of its restriction to scalar parameter and scalar measurement, it turns out that there exist a host of problems for which the theorem holds. In particular, the one-dimensional exponential family of probability density functions or probability mass functions with
has a monotone non-decreasing likelihood ratio in the sufficient statistic, provided that is non-decreasing.
Finally, we note that in general, UMP tests do not exist for vector parameters or for two-sided tests (a test in which one hypothesis lies on both sides of the alternative). The reason is that in these situations, the most powerful test of a given size for one possible value of the parameter (e.g. for where ) is different from the most powerful test of the same size for a different value of the parameter (e.g. for where ). As a result, no test is uniformly most powerful in these situations.
Ferguson, T. S. (1967). "Sec. 5.2: Uniformly most powerful tests". Mathematical Statistics: A decision theoretic approach. New York: Academic Press.
Mood, A. M.; Graybill, F. A.; Boes, D. C. (1974). "Sec. IX.3.2: Uniformly most powerful tests". Introduction to the theory of statistics (3rd ed.). New York: McGraw-Hill.
L. L. Scharf, Statistical Signal Processing, Addison-Wesley, 1991, section 4.7.