Unitary divisor

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, a natural number a is a unitary divisor (or Hall divisor) of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number.

Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

The sum-of-unitary-divisors function is denoted by the lowercase Greek letter sigma thus: σ*(n). The sum of the k-th powers of the unitary divisors is denoted by σ*k(n):

If the proper unitary divisors of a given number add up to that number, then that number is called a unitary perfect number.


The number of unitary divisors of a number n is 2k, where k is the number of distinct prime factors of n.

This is because each integer N > 1 is the product of positive powers prp of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers prp for pS. If there are k prime factors, then there are exactly 2k subsets S, and the statement follows.

The sum of the unitary divisors of n is odd if n is a power of 2 (including 1), and even otherwise.

Both the count and the sum of the unitary divisors of n are multiplicative functions of n that are not completely multiplicative. The Dirichlet generating function is

Every divisor of n is unitary if and only if n is square-free.

Odd unitary divisors[edit]

The sum of the k-th powers of the odd unitary divisors is

It is also multiplicative, with Dirichlet generating function

Bi-unitary divisors[edit]

A divisor d of n is a bi-unitary divisor if the greatest common unitary divisor of d and n/d is 1. The number of bi-unitary divisors of n is a multiplicative function of n with average order where[1]

A bi-unitary perfect number is one equal to the sum of its bi-unitary aliquot divisors. The only such numbers are 6, 60 and 90.[2]

OEIS sequences[edit]


  1. ^ Ivić (1985) p.395
  2. ^ Sandor et al (2006) p.115

External links[edit]