Unusual number

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Demonstration, with Cuisenaire rods, that the number 10 is an unusual number, its largest prime factor being 5, which is greater than √10 ≈ 3.16

In number theory, an unusual number is a natural number n whose largest prime factor is strictly greater than .

A k-smooth number has all its prime factors less than or equal to k, therefore, an unusual number is non--smooth.

Relation to prime numbers[edit]

All prime numbers are unusual. For any prime p, its multiples less than p² are unusual, that is p, ... (p-1)p, which have a density 1/p in the interval (p,p²).

Examples[edit]

The first few unusual numbers are

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67.... (sequence A064052 in the OEIS)

The first few non-prime unusual numbers are

6, 10, 14, 15, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102....

Distribution[edit]

If we denote the number of unusual numbers less than or equal to n by u(n) then u(n) behaves as follows:

n u(n) u(n) / n
10 6 0.6
100 67 0.67
1000 715 0.715
10000 7319 0.7319
100000 70128 0.70128

Richard Schroeppel stated in 1972 that the asymptotic probability that a randomly chosen number is unusual is ln(2). In other words:

External links[edit]