Uracil-DNA glycosylase

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Uracil DNA glycosylase
Protein UNG PDB 1akz.png
PDB rendering based on 1akz.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols UNG ; DGU; HIGM4; HIGM5; UDG; UNG1; UNG15; UNG2
External IDs OMIM191525 MGI109352 HomoloGene6585 ChEMBL: 3277 GeneCards: UNG Gene
EC number
RNA expression pattern
PBB GE UNG 202330 s at tn.png
More reference expression data
Species Human Mouse
Entrez 7374 22256
Ensembl ENSG00000076248 ENSMUSG00000029591
UniProt P13051 P97931
RefSeq (mRNA) NM_003362 NM_001040691
RefSeq (protein) NP_003353 NP_001035781
Location (UCSC) Chr 12:
109.1 – 109.11 Mb
Chr 5:
114.13 – 114.14 Mb
PubMed search [1] [2]

Uracil-DNA glycosylase, also known as UNG or UDG, is a human gene[1] though orthologs exist ubiquitously among prokaryotes and eukaryotes and even in some DNA viruses. The first uracil DNA-glycosylase was isolated from Escherichia coli.[2]


The human gene encodes one of several uracil-DNA glycosylases. Alternative promoter usage and splicing of this gene leads to two different isoforms: the mitochondrial UNG1 and the nuclear UNG2.[1] One important function of uracil-DNA glycosylases is to prevent mutagenesis by eliminating uracil from DNA molecules by cleaving the N-glycosylic bond and initiating the base-excision repair (BER) pathway. Uracil bases occur from cytosine deamination or misincorporation of dUMP residues. After a mutation occurs, the mutagenic threat of uracil propagates through any subsequent DNA replication steps.[3] Once unzipped, mismatched guanine and uracil pairs are separated, and DNA polymerase inserts complementary bases to form a guanine-cytosine (GC) pair in one daughter strand and an adenine-uracil (AU) pair in the other.[4] Half of all progeny DNA derived from the mutated template inherit a shift from GC to AU at the mutation site.[4] UDG excises uracil in both AU and GU pairs to prevent propagation of the base mismatch to downstream transcription and translation processes.[4] With high efficiency and specificity, this glycosylase repairs more than 10,000 bases damaged daily in the human cell.[5] Human cells express five to six types of DNA glycosylases, all of which share a common mechanism of base eversion and excision as a means of DNA repair.[6]


UDG is made of a four-stranded parallel β-sheet surrounded by eight α-helices.[7] The active site comprises five highly conserved motifs that collectively catalyze glycosidic bond cleavage:[8][9]

  1. Water-activating loop: 63-QDPYH-67[9]
  2. Pro-rich loop: 165-PPPPS-169[7]
  3. Uracil-binding motif: 199-GVLLLN-204[7][8]
  4. Gly-Ser loop: 246-GS-247[7]
  5. Minor groove intercalation loop: 268-HPSPLS-273[7][8]


Glycosidic bond cleavage follows a “pinch-push-pull” mechanism using the five conserved motifs.[7]

Pinch: UDG scans DNA for uracil by nonspecifically binding to the strand and creating a kink in the backbone, thereby positioning the selected base for detection. The Pro-rich and Gly-Ser loops form polar contacts with the 3’ and 5’ phosphates flanking the examined base.[8] This compression of the DNA backbone, or “pinch,” allows for close contact between UDG and base of interest.[7]

Push: To fully assess the nucleotide identity, the intercalation loop penetrates, or pushes into, the DNA minor groove and induces a conformational change to flip the nucleotide out of the helix.[10] Backbone compression favors eversion of the now extrahelical nucleotide, which is positioned for recognition by the uracil-binding motif.[7] The coupling of intercalation and eversion helps compensate for the disruption of favorable base stacking interactions within the DNA helix. Leu272 fills the void left by the flipped nucleotide to create dispersion interactions with neighboring bases and restore stacking stability.[8]

Pull: Now accessible to the active site, the nucleotide interacts with the uracil binding motif. The active site shape complements the everted uracil structure, allowing for high substrate specificity. Purines are too large to fit in the active site, while unfavorable interactions with other pyrimidines discourage binding alternative substrates.[6] The side chain of Tyr147 interferes sterically with the thymine C5 methyl group, while a specific hydrogen bond between the uracil O2 carbonyl and Gln144 discriminates against a cytosine substrate, which lacks the necessary carbonyl.[6] Once uracil is recognized, cleavage of the glycosidic bond proceeds according to the mechanism below.

Step 1: Nucleophilic water attacks the C-N glycosidic bond (intercalation by Leu272 not shown for simplicity).
Step 2: Uracil intermediate leaves the DNA helix; hydrogen bonds in the active site stabilize the DNA backbone.
Step 3: Proton exchange generates free uracil.

The position of the residues that activate the water nucleophile and protonate the uracil leaving group are widely debated, though the most commonly followed mechanism employs the water activating loop detailed in the enzyme structure.[9][11] Regardless of position, the identities of the aspartic acid and histidine residues are consistent across catalytic studies.[7][8][9][11][12]


Uracil-DNA glycosylase has been shown to interact with RPA2.[13]


  1. ^ a b "Entrez Gene: UNG uracil-DNA glycosylase". 
  2. ^ Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B (May 1977). "DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli". The Journal of Biological Chemistry 252 (10): 3286–94. PMID 324994. 
  3. ^ Longo MC, Berninger MS, Hartley JL (Sep 1990). "Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions". Gene 93 (1): 125–8. doi:10.1016/0378-1119(90)90145-H. PMID 2227421. 
  4. ^ a b c Pearl LH (Aug 2000). "Structure and function in the uracil-DNA glycosylase superfamily". Mutation Research 460 (3-4): 165–81. doi:10.1016/S0921-8777(00)00025-2. PMID 10946227. 
  5. ^ Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (Nov 1996). "A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA". Nature 384 (6604): 87–92. doi:10.1038/384087a0. PMID 8900285. 
  6. ^ a b c Lindahl T (Apr 2000). "Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair". Mutation Research 462 (2-3): 129–35. doi:10.1016/S1383-5742(00)00024-7. PMID 10767624. 
  7. ^ a b c d e f g h i Parikh SS, Putnam CD, Tainer JA (Aug 2000). "Lessons learned from structural results on uracil-DNA glycosylase". Mutation Research 460 (3-4): 183–99. doi:10.1016/S0921-8777(00)00026-4. PMID 10946228. 
  8. ^ a b c d e f Zharkov DO, Mechetin GV, Nevinsky GA (Mar 2010). "Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition". Mutation Research 685 (1-2): 11–20. doi:10.1016/j.mrfmmm.2009.10.017. PMC 3000906. PMID 19909758. 
  9. ^ a b c d Acharya N, Kumar P, Varshney U (Jul 2003). "Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases". Microbiology 149 (Pt 7): 1647–58. doi:10.1099/mic.0.26228-0. PMID 12855717. 
  10. ^ Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (Mar 1995). "Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis". Cell 80 (6): 869–78. doi:10.1016/0092-8674(95)90290-2. PMID 7697717. 
  11. ^ a b Schormann N, Grigorian A, Samal A, Krishnan R, DeLucas L, Chattopadhyay D (2007). "Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly". BMC Structural Biology 7: 45. doi:10.1186/1472-6807-7-45. PMC 1936997. PMID 17605817. 
  12. ^ Savva R, McAuley-Hecht K, Brown T, Pearl L (Feb 1995). "The structural basis of specific base-excision repair by uracil-DNA glycosylase". Nature 373 (6514): 487–93. doi:10.1038/373487a0. PMID 7845459. 
  13. ^ Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, Bharati S, Lindmo T, Benichou S, Benarous R, Krokan HE (Mar 1997). "A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A". The Journal of Biological Chemistry 272 (10): 6561–6. doi:10.1074/jbc.272.10.6561. PMID 9045683. 

Further reading[edit]