User:Crasshopper

I started editing Wikipedia in 2005 and average 100 edits/year.

I'm an American living in Indiana.

I started or revived the following pages:

Wikipedia:Babel
 de-1 Dieser Benutzer hat grundlegende Deutschkenntnisse.
 en This user is a native speaker of the English language.
 es-2 Este usuario puede contribuir con un nivel intermedio de español.
 zh-1 該用戶能以基本的中文進行交流。 该用户能以基本的中文进行交流。

Other pages I started:

• John Challifour
• Max Zorn - not really but I contributed an interesting tidbit about his guitar-playing and once when he got hit by a bus.

Unusual articles

The rest




My favorite number is ${\displaystyle {\sqrt {2}}}$.

Curriculum Vitæ

Equations

${\displaystyle \max \sum _{t=1}^{\infty }\delta ^{t}\cdot u(w_{t})}$

${\displaystyle L=\sum _{t=0}^{\infty }\sum _{z^{t}}\beta ^{t}\cdot U(c_{t}(z^{t})\cdot \pi _{t}(z^{t}))+\sum _{t=0}^{\infty }\sum _{z^{t}}\lambda _{t}z^{t}\cdot \{z^{t}\cdot f(k_{t}(z^{t-1}))+(1-\delta )\cdot k_{t}(z^{t-1})-c_{t}(z^{t})+k_{t+1}(z^{t})\}}$

${\displaystyle \=\mathrm {wage} \cdot (1-\mathrm {leisure\ time} )}$

⋉ Rubik's Cube is ${\displaystyle \mathbb {Z} _{3}^{7}\times \mathbb {Z} _{2}^{11}\rtimes ((A_{8}\times A_{12})\rtimes \mathbb {Z} _{2})}$

<img src="http://latex.codecogs.com/gif.latex?\large \dpi{120} \bg_white \Huge{\text{ Determinant }} \ \Normal{\det |\mathcal{M}|} \\ \\ |\mathcal{M}| \Large{\text{ is }} \left| \; \begin{pmatrix} &a \leadsto a &&& a \leadsto b& \\ \\ &b \leadsto a &&& b \leadsto b& \end{pmatrix} \; \right|" title="\large \dpi{120} \bg_white \Huge{\text{ Determinant }} \ \Normal{\det |\mathcal{M}|} \\ \\ |\mathcal{M}| \Large{\text{ is }} \left| \; \begin{pmatrix} &a \leadsto a &&& a \leadsto b& \\ \\ &b \leadsto a &&& b \leadsto b& \end{pmatrix} \; \right|" />

${\displaystyle {\begin{matrix}100\,^{\circ }{\rm {F}}&\longrightarrow &311\,{\rm {K}}\\\\&&\downarrow \\\\-180\,^{\circ }{\rm {F}}&\longleftarrow &155\,^{1}\!\!/\!_{2}\,{\rm {K}}\end{matrix}}}$

${\displaystyle \|{\text{song}}\|=\int {\text{compression wave}}}$

${\displaystyle \gamma \ {\overset {\mathrm {def} }{=}}\ {1 \over \ {\sqrt[{2}]{\;1\;-\;(\,{v \over c}\,)\,^{2}}}\ }}$

${\displaystyle \gamma \ {\overset {\mathrm {def} }{=}}\ {1 \over \ {\sqrt[{2}]{1\;-\;(\,{\textrm {\%\ of\ speed\ of\ light}}\,)\,^{2}}}\ }}$

${\displaystyle {\color {red}x'}\gets \gamma \cdot {\color {red}x}\;+\;\imath \;\gamma \;\cdot \;{v \over c}\;\cdot \;t\qquad =\ {\frac {{\color {red}x}\;+\;^{1}\!\!/\!_{4}\circlearrowleft \;\cdot \;\mathbf {\%} \;\cdot \;t}{\mathrm {NORM\ 1} }}}$

${\displaystyle t'\gets \gamma \cdot t\;-\;\imath \;\gamma \;\cdot \;{v \over c}\;\cdot \;{\color {red}x}\qquad =\ {\frac {t\;+\;^{1}\!\!/\!_{4}\circlearrowright \;\cdot \;\mathbf {\%} \;\cdot \;t}{\mathrm {NORM\ 1} }}}$