User:Juan Marquez

From Wikipedia, the free encyclopedia
Jump to: navigation, search
e^{i \pi\ } This user is a mathematician.

kws: surface N_3 surface, Juan Manuel Marquez Bobadilla, Juan Marquez, kid, JMMB, vaquero, mathematician, trigenus, trigénero, topology, topología, low dimensional topology, Stiefel-Whitney surface, superficie de Stiefel-Whitney, three-manifold, tres-variedad, surface-bundle, circle-bundle, homeotopía, mapping class group, homeotopy of non-orientable manifolds, abstract embedding, the seven N_3-bundles over the 1-sphere, Universidad de Guadalajara, CIMAT, mathe-mathe, mathe-toon, flecha, TQFT, multilinear, multilineal, covector, banda de mobius, quantum mechanics, matemática,s, tensorólogo, tensorman... ... amalgamated free product, HNN-extension, graph of groups, Bass-Serre theory, topological end, mathemagizian

Pffffft.gif Totopodemaiz.jpg Totopodemaiz2.jpg

Remember: Topology is a modern branch of mathematics which formalizes the processes of stretching and deforming without tearing, as well as of cutting and pasting to construct new spaces, new geometries...

Neologisms on bundles:

Pffffft.gif Rubik cube.png The Great Wave off Kanagawa.jpg Inside-out torus (animated, small).gif Cayley graph of F2.svg Hadwiger covering.svg Hyperbolic triangle.svg Toroidal polyhedron.gif Moxi003.JPG HeegaarsplitofSFS.PNG



Erdős 5 This user has an Erdős number of 5

juanmanuel marquezbobadilla

my standard is eom

User:Juan Marquez/Bildnis


Juan Manuel Márquez Bobadilla ph.d. candidate at CIMAT and math-lecturer at the Dept. of Mathematics, campus CUCEI, Universidad de Guadalajara.

Thesis: tri-genus and splittings of surface bundles over S^1 with non-orientable fibers, periodic monodromies

  • wikimedia commons uploads[3]


I am...[edit]

a Rubik´s fan Rubik cube.png yes, i just recently learn how to solve it. See my algorithm's version at [4]. It is at a moodle´s module, to enter just check the entrar como invitado (enter as an invited) to see.

Some of "mine"[edit]

Contributions in S.W. Hawking language here.

Some missing yet[edit]


stackrel substitute[edit]

\scriptstyle  e\longrightarrow N \longrightarrow^{\!\!\!\!\!\!\!\!\!\beta}\ \, G \longrightarrow^{\!\!\!\!\!\!\!\!\!\alpha}\ \,  H \longrightarrow e
\scriptstyle  1\longrightarrow N \longrightarrow^{\!\!\!\!\!\!\!\beta}\ \, G \longrightarrow^{\!\!\!\!\!\!\!\alpha}\ \,  H \longrightarrow 1
\scriptstyle  0\longrightarrow N \longrightarrow^{\!\!\!\!\!\!\beta}\ \, G \longrightarrow^{\!\!\!\!\!\!\alpha}\ \,  H \longrightarrow 0

... seen in semidirect product

\scriptstyle  X \stackrel{f}{\to} Y

some humor[edit]

You will find (finally) an explanation of what was happening in Rudin's mind when he wrote his famous real analysis book:




\scriptstyle  \mathfrak{AaBbCcDdUu}

\scriptstyle \Sigma \Sigma scriptstyle

algebraic, geometrical, topological ends and related stuff[edit]



  • esto fué la 1ra prueba del comando \scriptstyle: \scriptstyle G=\langle H, t | t^{-1}Kt=L\rangle allá en wiki-ranchu

thing to push[edit]

Analogy in mathematics

Deep analogies in mathematics

Deep analogies in a mathematical science

Deep analogies in a mathematical science or in a science in general

Deep analogies in science

Deep analogies in a science in general

Neil Turok Eqn[edit]

\Psi=\int\mathrm{e}^{{\frac{1}{h}}\int(\frac{R}{16\pi G}-F^2+\bar{\psi}iD\psi-\lambda\varphi\bar{\psi}\psi+|D\varphi|^2-V(\varphi)


Cloud people [6]


Combinatorial Group Th. key words[edit]



\scriptstyle \pi(U_{1},x_{0})=\langle S_{1}\ |\ R_{1}\rangle\,,
\scriptstyle \pi(U_{2},x_{0})=\langle S_{2}\ |\ R_{2}\rangle\, and
\scriptstyle  \pi(U_{1}\cap U_{2}, x_{0})=\langle S\ |\ R\rangle.

then, \scriptstyle \pi(X, x_{0})=\langle S_1 \cup S_2\ |\ R_1 \cup R_2 \cup \{ (i_1)_{*}(s)((i_2)_{*}(s))^{-1}, s\in S \}\rangle.

Here \scriptstyle i_1 : U_1 \cap U_2 \rightarrow U_1 and \scriptstyle i_2 : U_1 \cap U_2 \rightarrow U_2 are the natural inclusions, then \scriptstyle (i_1)_{*} y \scriptstyle  (i_2)_{*} are the induced group-morphisms \scriptstyle (i_1)_{*} : \pi(U_1 \cup U_2, x_0)  \rightarrow  \pi(U_1, x_0) via \scriptstyle [\alpha] \rightarrow (i_1)_{*}([\alpha]):=[i_1 \circ \alpha] and analogously \scriptstyle (i_2)_{*} : \pi(U_1 \cup U_2, x_0)  \rightarrow  \pi(U_2, x_0) via \scriptstyle [\alpha] \rightarrow (i_2)_{*}([\alpha]):=[i_2 \circ \alpha].