# User:LucasVB/Sandbox

Main | Talk | Junk | Gallery | Sandbox

## Sandbox

This is a test page. Ignore whatever you see here :)

Polar polygon: sec(asin(sin(t*n/2))*2/n)

Hail anti-aliasing!

Ҡiff 02:58, 9 February 2006 (UTC)

${\displaystyle E_{p}=p{\frac {a^{2}}{ed^{3}}}}$

Radial line ${\displaystyle -\left(x{\frac {1}{\cos \theta }}+y{\frac {1}{\sin \theta }}\right)=0}$

${\displaystyle -1/(1+0.8*cos(x))+cos(x)+1}$

${\displaystyle y=-{\frac {1}{1+e\cos(x)}}+\cos(x)}$

${\displaystyle \int _{-\pi }^{\pi }\cos(nx)\,dx=0}$

${\displaystyle \int _{-\pi }^{\pi }\sin(nx)\,dx=0}$

${\displaystyle \int _{-\pi }^{\pi }\sin(nx)\sin(mx)\,dx={\begin{cases}\pi ,&n=m\\0,&n\neq m\end{cases}}}$

Trapezoid functions

asin(sin(x))*3/pi * ((sgn(sin(x))*sgn(sin(3*x))) + 1)/2 + (1-(sgn(sin(x))*sgn(sin(3*x))))/2 * sgn(sin(x));

HSV trapezoid function: ((sgn(1-((x-floor(x/3)*3)-3/2)^2)+1)/2 - (sgn(1-(2*((x-floor(x/3)*3)-3/2))^2)+1)/2 ) * (abs(2*(x-floor(x/3)*3)-3)-1) + (1-(sgn(1-((x-floor(x/3)*3)-3/2)^2)+1)/2)