User:Rockpocket/MGP/GRXCR1

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Model organisms[edit]

Model organisms have been used in the study of GRXCR1 function. A conditional knockout mouse line, called Grxcr1tde[1] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[2][3][4]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][6]

Twenty four tests were carried out on mutant mice and thirteen significant abnormalities were observed.[5] Homozygous mutant animals of both sex displayed decreased body weights, grip strength, body fat, body length and plasma immunoglobulins, abnormal open field test and modified SHIRPA behaviour, and severe hearing impairment at 13 weeks. Male homozygous mutant animals additionally showed abnormal indirect calorimetry and clinical chemistry parameters, improved glucose tolerance and a decreased leukocyte cell number. Female homozygotes also had an increased response to stress-induced hyperthermia and a significantly reduced monocyte percentage.[5]

References[edit]

  1. ^ "International Knockout Mouse Consortium". 
  2. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750. 
  3. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature 474: 262-263. doi:10.1038/474262a. 
  4. ^ Collins FS, Rossant J, Wurst W (January 2007). A mouse for all reasons. Cell 128(1): 9-13. doi:10.1016/j.cell.2006.12.018 PMID 17218247. 
  5. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley. 
  6. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMID 21722353. 
  7. ^ "Body weight data for Grxcr1". Wellcome Trust Sanger Institute. 
  8. ^ "Anxiety data for Grxcr1". Wellcome Trust Sanger Institute. 
  9. ^ "Neurological assessment data for Grxcr1". Wellcome Trust Sanger Institute. 
  10. ^ "Grip strength data for Grxcr1". Wellcome Trust Sanger Institute. 
  11. ^ "Dysmorphology data for Grxcr1". Wellcome Trust Sanger Institute. 
  12. ^ "Indirect calorimetry data for Grxcr1". Wellcome Trust Sanger Institute. 
  13. ^ "Glucose tolerance test data for Grxcr1". Wellcome Trust Sanger Institute. 
  14. ^ "DEXA data for Grxcr1". Wellcome Trust Sanger Institute. 
  15. ^ "Body temperature data for Grxcr1". Wellcome Trust Sanger Institute. 
  16. ^ "Clinical chemistry data for Grxcr1". Wellcome Trust Sanger Institute. 
  17. ^ "Haematology data for Grxcr1". Wellcome Trust Sanger Institute.