User:TheLongTone/sandbox

From Wikipedia, the free encyclopedia
Jump to: navigation, search
well, it is a sandbox......

[1]



Maurice Tabuteau[edit]

Maurice Tabuteau au Grand Prix A.C.F. 1914

Biographie


Naissance

24 avril 1884 Paris


Décès

14 juin 1976 (à 92 ans) Massy


Nationalité

Français


Activités

Pilote, pilote automobile


Autres informations


Distinction

Chevalier de la Légion d'honneur‎


modifier - modifier le code - modifier Wikidata

Maurice Tabuteau accidenté sur Alda, au Grand Prix de France 1914 (abandon).

Maurice Alfred Eugène Tabuteau, (April 24 1884- June 14 1976) à Massy, est un pionnier français de l'aviation. Born in the 10th arrondissement of Paris

Formation

Comme beaucoup d'autres aviateurs, ce fils d'une famille aisée, orphelin assez tôt d'un père ingénieur[2][2], a débuté dans le monde des sports mécaniques. Ephémère élève de l’École supérieure d'électricité, il entre dans la vie active comme metteur au point et essayeur de motocyclettes chez Griffon, puis comme directeur technique des taxis De Dion-Bouton[2][2]. Il sera même pilote automobile : sixième de la VIIe Coupe des Voiturettes à Boulogne-sur-Mer en 1913[3][3] et participant au Grand Prix de France 1914, les deux fois sur Alda. Après guerre il est un des directeurs de l'entreprise de carrosserie de l'ancien pilote Weymann[4][4].

Aeronautical career[edit]

1910 Michelin Cup, won with a flight lasting 7hours and 48 minutes. [2]

Pau to Paris in one day[3] French military brevet 22 Aug 1911[4] Il se lance dès 1909 dans l'aviation, où il enregistrera de beaux succès : la Fédération aéronautique internationale a enregistré seven records set by Maurice Tabuteau (des records de distance, et surtout de vitesse)[5][5], en 1910 et 1912.

Le brevet de pilote no 128 lui est attribué le 1er juillet 1910. Le 19 août 1910, il remporte le prix de la ville de Bayonne, soit 1 000 francs pour avoir survolé le premier l'agglomération de Bayonne[6][6] et, le 31 décembre 1910, la coupe Michelin. Le 28 septembre, il vole de Biarritz à Saint-Sébastien, où a lieu un meeting d'aviation, ce qui lui donne l'occasion d'atterrir sous les yeux du roi Alphonse XIII[7][7]. Le 3 octobre il effectue le vol de retour en franchissant les Pyrénées, remportant de ce fait la coupe Brodsky[8][8].

Le 4 juin 1911, il « inaugure les voyages conjugaux » en emmenant sa femme, pour se rendre par la voie des airs chez ses beaux-parents à Samois[9][9]. Engagé avec le no 1 sur biplan Bristol dans le Circuit européen en juillet[10][10], il est à l'arrivée neuvième et dernier[11][11] mais il a bouclé le parcours, alors que 32 concurrents ont abandonné.

Il devient pilote d'essai chez Morane-Saulnier[12][12] et bat en un seul vol, le 24 janvier 1912 à Pau sur Morane-Saulnier à moteur Gnome de seulement 50 ch, les records de vitesse sur 200, 250 et 300 km et les records de distance des 2 heures et des 3 heures[13][13]. Le 11 mars 1912, il frappe les esprits en réalisant, toujours sur Morane à moteur Gnome de 50 ch, le voyage Pau-Paris « dans la moitié du temps que met à le couvrir le rapide de Bordeaux » (escales déduites)[14][14].

Il s'attaque le premier, en 1912, à la coupe Deutsch de la Meurthe et en est, à la moyenne de 112 km/h, le 27 avril le premier « tenant ». Mais la coupe lui est ravie le 1er mai par Hélen, qui, sur Nieuport à moteur Gnome de 70 ch, porte la vitesse à battre sur le même tour de Paris à 126 km/h[15][15]. À la fin de l'année 1912, Tabuteau se range des avions pour revenir à l’automobile, comme directeur commercial des automobiles Alda. La première Guerre mondiale le ramènera un temps à l’aviation, d’abord comme moniteur de perfectionnement, puis en mission aux États-Unis où il participe au développement du moteur Liberty[2][2].

Distinctions Chevalier de l'ordre de Charles III d'Espagne[16][16] Chevalier de la Légion d'honneur[17][17]

Références

1.↑ ↑ Acte no 1864 du 25 avril 1884 2.↑ 2.01 2.12 2.23 « Maurice Tabuteau : pionnier de l’Aviation, propriétaire d’un Wassmer » [PDF] (consulté le 9 juin 2016) 3.↑ ↑ (en) « 1913 Grand Prix », sur Team DAN (consulté le 9 juin 2016) 4.↑ ↑ « Autour du monde aérien : Weymann », L'Aérophile,‎ mai 1928, p. 141 5.↑ ↑ « Records de Maurice Tabuteau », sur FAI (consulté le 11 juin 2016) 6.↑ ↑ Stéphanie Meyniel, « Le 19 août 1910 dans le ciel : Prix de la ville de Bayonne », sur air-journal, 19 août 2013 (consulté le 7 juin 2016) 7.↑ ↑ « Morane et Tabuteau volent devant Alphonse XIII », Le Journal, no 6577,‎ 29 septembre 1910, p. 4 (lire en ligne) 8.↑ ↑ « Dernière heure : les Pyrénées en aéroplane », Le Journal, no 6582,‎ 4 octobre 1910, p. 4 (lire en ligne) 9.↑ ↑ « Aviation : le voyage aéro-conjugal », Le Figaro, no 157,‎ 6 juin 1911, p. 6 (lire en ligne) 10.↑ ↑ « La conquête de l'air : le Circuit européen », Le Figaro, no 168,‎ 17 juin 1911, p. 4 (lire en ligne) 11.↑ ↑ « Le Circuit européen d'aviation : lendemain de victoire », Le Journal,‎ 9 juillet 1911, p. 2 (lire en ligne) 12.↑ ↑ « Tabuteau fait des prodiges », L'Aéro, no 322,‎ 18 décembre 1911, p. 3 (lire en ligne) 13.↑ ↑ « La lutte pour les records », L'Aérophile, no 3,‎ 1er février 1912, p. 63 (lire en ligne) 14.↑ ↑ « Nouvelles sportives : un splendide raid de Tabuteau », La revue aérienne, no 83,‎ 25 mars 1912, p. 162 (lire en ligne) 15.↑ ↑ « Les grandes épreuves de l'aviation : la coupe Deutsch de la Meurthe », L'Aérophile,‎ 15 mai 1912, p. 229 (lire en ligne) 16.↑ ↑ « Sports : aéronautique », Le Temps, no 17990,‎ 1er octobre 1910, p. 4 (lire en ligne) 17.↑ ↑ « La remise des décorations », Le Temps, no 18819,‎ 2 janvier 1913, p. 6 (lire en ligne)

 Portail de l’aéronautique 
 Portail du sport automobile 
==Jessica Warboys==

Jessica Warboys (born 1977) is a British artist who works in a variety of media, including painting, sculpture, film, and performance[5]

Education[edit]

She received a Master of Fine Art from in 2004 Trained at Falmouth College of Arts, graduating in 2001. and went on to the Slade School of Art, receiving an MA in 2004

Recent solo exhibitions include A painting cycle at Nomas Foundation, Rome (2012), Victory Park Tree Painting at Cell Project Space, London (2011) and Land & Sea at Le Crédac, Ivry-sur-Seine, France (2011). Her work has been included in numerous group exhibitions including dOCUMENTA (13) in Kassel, Germany (2012), Camera Britannica at Centre Pompidou, Paris (2012) and Los Pasos Perditos at Galerie Andreas Huber, Vienna (2012).

Spike Island [6] Exhibition at Tate St.Ives[7]

R[edit]

I recently bought myself a copy of The German Giants, the Putnam volume on the extraordinary large bombers built in Germany during WW1. & I thought I'd do a little bit of work on the subject. What I found was a mess. There are a number of overlapping articles:

  1. Riesenflugzeug
A general article on the topic
  1. Zeppelin-Staaken Riesenflugzeuge
This is intended to be an article on all the Zeppelin company's R-planes. Confusingly, the first three designs were built at Gotha and are designated VGO.1, 2 & 3; the first machine to be built at Staaken was the R.IV. So, the title is not satisfactory, unless the article ignores the VGO aircraft. Which would be a nonsense, since they are a clear line of development.
  1. Zeppelin-Staaken

Shenstone[edit]

Beverly Shenstone (1906-1979) was a Canadian aerodynamicist, best known for his work on the design of the Supermarine Spitfire

Born in Toronto graduated from the University of Toronto with Bachelors and Masters Degrees in Aeronautics. After graduation he was briefly employed by an Air Ministry research laboratory in London, after which he moved to Germany to join the staff of Junkers at Dessau. In Germany he became a friend of Alexander Lippisch and also met Ludwig Prandtl. In 1931 accepted a job with Vickers Supermarine, where he was responsible for persuading R. J. Mitchell to adopt an elliptical planform for the wing of what would become the Supermarine Spitfire. From 1938 he served in the Air Ministry, later the Directorate of Technical Development, the British Air Commission in Washington and in the Ministry of Aircraft Production as Assistant Director of Research and Development of Air Transport. In 1948 he became Chief Engineer at British European Airways and in 1964 Technical Director for B.O.A.C[8] From May 1962 to May 1963 he was President of Ryal Aeronautical Sciety. http://aerosociety.com/Assets/Docs/Publications/The%20Journal%20of%20Aeronautical%20History/2013-02_SpitfireWing-Ackroyd.pdf

(Supermarine Works). He moved to the Air Ministry in 1938 and this was followed by his gaining an appointment with the Directorate of Technical Development. In 1940 served with the British Air Commission in Washington, but returned to England after three years to work with the Ministry of Aircraft Production as Assistant Director of Research and Development of Air Transport. Other important posts he held were Technical Adviser to the Canadian Minister for Reconstruction, when he acted for him as technical administrator for Trans-Canada Airlines at Canadair, and assistant to the vice president of

60 living in Cyprus Cyprus Appointments As part of the programme of introducing Trident 2s on major routes, Cyprus Airways have appointed an additional 12 captains and first officers. Amongst them is Captain A. S. Johnson, previously senior flight manager of BEA's Trident fleet. The airline has also appointed Mr Beverley Shenstone, formerly chief engineer of BEA, who now lives in Cyprus, as part-time consultant and technical adviser [9]

Interested in man-powered flight The MAN-POWERED AIRCRAFT COMMITTEE,(MAPAC)

Cranfield in January 1957 and formed with the purposes of reviewing relevant literature, assessing the prospects of HPF and promoting its realisation. [10]

SD[edit]

Flight acc of 1928 seaplane crash


The Times (London, England), Tuesday, Dec 04, 1928; pg. 16; Issue 45067. Lists some of the 17 casualties.

http://www.planecrashinfo.com/1928/1928-31.htm

Dornier Wal Registration: P-BACA cn / ln: 83 Aboard: 14 (passengers:9 crew:5)

Demoiselle[edit]

second state no.19
Santos Dumont Demoiselle.jpg

Busteed[edit]

Air Commodore Henry Richard (Harry) Busteed, OBE, AFC was an Australian pioneer aviator. Born in Carlton, Victoria on the 6 November 1887 to parents Jessie May (nee Marson) and Henry Richard Busteed. died in England on the 14th June 1965.[3]

While working for the [[Tarrant automobile |Tarrant]] motor car company in Melbourne in 1910 managed to make a few short flights in an Anzani engined Blériot had arrived in Melbourne, and the latter took Busteed's fancy. He secured permission to practise upon it, but only got as far as a few hops, and many repairs. Deciding that Emigrated to England on the same ship as Harry Hawker and Harry Kauper First Australian to be awarded a pilot's license, Pilot's license no. 94 on 13 June 1911.

1912 flew on of the Bristol monoplanes enterd for the British Military Aircraft Trials, and also demonstration flights in Spain; during his visit to Spain won the Avia Cup for the first flight tyo be made over Madrid.


Instructor for Bristol and later chief test pilot, contributed to the design of the Bristol Scout.

|url=http://www.flightglobal.com/pdfarchive/view/1913/1913%20-%201342.html%7C title=H. R. Busteed]] |date=20 December 1913| page=1368 Served with the RNAS, principally engaged on experimemtal work, including the development of arrestor mechanisms for H.M.S. ''Furious''

1924 Senior RAF officer on Furious after she had been rebuilt C.O. of No. 10 Squadron when it was reformed in 1928, No. 203 Squadron RAF



OBE 7 Jan 1918, AFC - 1 Jan 1919, CdeG(F) - 17 May 1918

Air Cdre. H. R. Busteed. The Times (London, England), Friday, Jun 18, 1965; pg. 14; Issue 56351. Category: Obituaries



[4]]

Scout[edit]

  • Bruce Pt I [5]
  • Bruce Pt II [6]
  • Bruce pt III [7]
  • Bruce part IV [8]

JD1[edit]

The wing structure consisted of seven duralumin tubes, three on top and four inside the undersurface. Each of the top tubes was braced to the two adjacent lower tuber by a seried of dulalumin struts, arranged to form [[Warren Truss]es. All seven spars were in spliced. In the case of the upper spars the splice occurs 1 m. 59 cm. from the root, and the diameter decreases from 45 mm. to 40 mm. The lower spar splices are found 1 m. 27 cm. from the root, and the spar diameters before and after splice are 35 mm. and 30 two waved section strips, each 45 mm. wide, and of 29 S.W.G. duralumin, are riveted to the inside of the lower covering parallel to the spars. These are all plainly visible in Fig. 2.

http://www.flightglobal.com/pdfarchive/view/1920/1920%20-%200380.html

JJ1[edit]

The forward section of the fuselage, extending as far aft as the observer's cockpit, was of cctagonal section and was fabricated from 5mm (0.2 in) armour plate stiffened with channel section duralumin. Aft of the observer's cockpit the fuselage consisted of a duralumin structure made up of four tubular longerons with tubular cross and diagonal bracing members flattened at each end and rivetted to lugs welded onto steel collars threaded onto the longerons. These collars also carried three-ply formers to achieve the rounded top and bottom of the fuselage section, the lower formers being connected by wooden stringers. The two fuselage sections were joined by studs projecting from the end of each longeron secured to the rear armour plate of the observer's cockit by nuts. [11] The rear section of the fuselage was fabric-covered in most examples, although later production aircraft were skinned with corrugated duralumin.



All struts were of steel tubing with aluminium fairings riveted to formers are welded to the tube at intervals, are joined to the spars by means of riveted steel collars carrying welded-on lugs. At the fuselage, the struts finish in forkends, and are bolted to lugs welded to small steel plates" riveted to the armour-plate. http://www.flightglobal.com/pdfarchive/view/1920/1920%20-%200262.html page 262

The upper wing had ten tubular dulaumin spars, linked by cross-members to form a series of warren trusses. Most of these cross-members were, like the rear fuselage bracing, of tubular duralumin, but some in the outer part of the wing were of dural sheet folded to form a channel section.

Ailerons were fitted to the upper wing only: in the prototype these were unbalanced but in production aircraft large ovhanging balances were added. The ailerons were operated by torque tubes cioonected to the aileons by bell-cranks and push rods.

Macon/Akron[edit]

Structurally, the hull on the Akron differed considerably from contemporary Zeppelin practise. Consisting of eleven 36-sided principal transverse frames each separated by two intermediate frames, the principle frames were rigid triangular-section girders: this method of construction meant that the frames were inherently rigid rather than being braced by steel cables to maintain their shape. These frames were connected by three triangular-section keels, one at the top of the hull and the other two 45° from either side of the centerline. Another novel feature was the structural design of the tail fins. The customary design was for these to be a cruciform structure, with top fin connected by girders to the bottom fin, and port and starboard stabilisere similarly joined. In Akron the fins were simply connected to the transverse frames. As originally designed they were to have been connected to the aftermost three principal frames, but a design modification at the request of the US Navy resulted in the fins being shortened, so that the leading edge was only connected to one of the less substantial intermediate frames.

http://www.airships.net/us-navy-rigid-airships/uss-akron-macon

HF[edit]

Flown with success at many aviation meetings that year, including Lyons where Farman IIIs gained most of the prizes, among them the distance and cumulative hours flown prizes and the first three prizes in the 20 km speed prizes Paulhan Van der Born and Chavez won the speed competition, and also winning prizes at the St Petersburg http://www.flightglobal.com/pdfarchive/view/1910/1910%20-%200393.html?search=farman%7CContinental aviation meetings|21 May 1910 |page=391

Several examples were flown at the 1910 Bournemouth aviation meeting, and although outclassed in speed by the Bleriot monoplanes won a number of prizes, including those for the shortest landing run (won by Claude Grahame-White with a ground run of 2.1 m (7 ft) and the short takeoff, won by Bertram Dickson with a take-off run ov 105 7[convert: unknown unit]. http://www.flightglobal.com/pdfarchive/view/1910/1910%20-%200577.html Bournemouth ad its International Flying Week23 July 1910 p. 575

Flying experiments[edit]

Traian Vuia in his Vuia I flying machine in 1906

The Vuia I was a high-wing monoplane constructed entirely of steel tubing. The basic framework consisted of a pair of triangular frames, the lower members forming the sides of the rectangular chassis which bore four pneumatic-tyred wheels, the front pair steerable. The wing was mounted on the apices of these frames and resembled those of Otto Lilienthal's gliders, with a number of curved steel tubes radiating outwards from centres at the apex of each of the side frames, braced by wires attached to a pair of kingpost. They were covered in varnished linen. Pitch control was acheived by varying the angle of attack of the wing. A trapezoidal rudder was mounted behind and below the wing.

It was powered by a carbonic acid gas engine driving a single tractor propeller. Liquid carbon dioxide was vaporized in a Serpollet boiler and fed to a Serpollet engine. The fuel supply was enough for a running time of about five minutes at full power.[12]The aircraft was constructed for Vuia by the Parisian engineering company of Hockenjos and Schmitt. Construction was completed in December 1905 and qthe wings were pivoted to control ascent and descent. The 25 hp engine had to be adapted by Vuia himself as the engine he wanted was not available.[13] The liquid carbon dioxide was vaporized in a Serpollet boiler; the fuel supply was enough for a running time of about five minutes at full power.Cite error: The <ref> tag has too many names (see the help page). and on August 9 a brief flight of 24 m (79 ft) at a height of about 2.5 m (8 ft) was made, ending in a heavy landing which damaged the propeller.[14] In August 1906 he modified the aircraft, reducing the camber of the wing and adding an elevator.[15] In this form it is sometimes called the Vuia I-bis.

The main characteristics of the Vuia I:[16]

  • Span : 8.70 m (28.7 ft)
  • Length : 5.65 m (18.6 ft)
  • Height : 2.90 m (9.5 ft)
  • Lifting surface : 20 sq.m (217 sq.ft)
  • Engine (using carbonic acid as fuel): 25 hp at 930 rpm
  • Propeller: 2-bladed, 2.2 m (7 ft 2 in) diameter, designed by Victor Tatin.
  • Weight: 241 kg (531 lb) including fuel and pilot
A postcard of Vuia and his 1907 airplane Vuia II

In 1907 Vuia built the Vuia II , using an Antoinette 25 horsepower (19 kilowatts) internal combustion engine. This had the same basic configuration as the Vuia I-bis, but was both smaller and lighter, with a total weight (including pilot) of 210 kg (460 lb) and a wingspan of 7.9 metres (26 ft).[17] Vuia succeeded in making a brief flight on July 5, flying 20 m (66 ft), but damaging the aircraft and suffering slight injuries on landing.[18] No further attempts were made to fly the aircraft, Vuia being unable to finance further experiments.[19]

The British aviation historian Charles Harvard Gibbs-Smith described this aircraft as "the first man-carrying monoplane of basically modern configuration", yet "unsuccessful" because it was incapable of sustained flight.[20]

The French journal L'Aérophile emphasized that Vuia's machine had the capability to take off from a flat surface, without assistance such as an incline, rails, or catapult.[16] At the time Europe was aware of the efforts of the Wright brothers who on December 17, 1903, had flown their Wright Flyer from level ground using a dolly undercarriage running on a guide rail, though few yet recognised the achievement. The Wrights had made sustained and controlled flights in a complete circuit by September 1904.[21]

Charles Dollfus, former curator of the Air Museum in Paris, wrote that aviation pioneer Alberto Santos Dumont's use of wheels on his aircraft was influenced by Dumont's having seen Vuia's flight attempts.[22]

Train[edit]

Louis Emile Train
Louis Emile Train 1911.jpg
Train in 1911
Born 22 October 1877
Saint-Etienne, Loire
Died 10 October 1939, aged 61
Villemomble
Occupation Engineer
Aviator

Louis Emile Train, generally known as Emile Train (1877 - 1939) was an engineer and pioneer aviator Born 22 October 1877 at Saint-Etienne, LoireCite error: A <ref> tag is missing the closing </ref> (see the help page).


After serving a four year apprenticship in his father's arms manufacturing company


Shop selling bucycles and sewing machines. Mais c’est dans l’atelier de réparations que le jeune Emile nourrit déjà sa passion et son génie de la mécanique, au milieu d’une multitude de pignons, chaînons, tubes et engrenages divers.

Emile moved to Paris, working for various cycle manufactures before getting a job with car maunufacturers De Dion-Bouton . Mécanicien doué a hard worker, il s’installe en 1902 à Courbevoie and constructed his first motorcycle engine. Manufacturing distributors

Became interested in aviation and constructed his first aircraft at Meudon, gaining his pilots license (167) on 9 August 1910 only days after flying the aircraft for the first time.

Crash at the start of the 1911 Paris-Madrid air race when he made a forced landing with engine trouble shortly after takeoff. Owing to poor crowd control there were many spectators on the actual flying field, and unfortunately Train ran into a group including the Prime Minister, Ernest Monis, who was badly injured, and the Minister for War Henri Berteaux, who was killed. Train was absolved of all responsibility for the accident[23]

He took part in the Circuit of Europe, managing to remain in the competition until the Dover-Shoreham-by-Sea leg, during which he became lost and then damaged his aircraft when landing.[24] Although he had not succeeded in winning any of the stage prizes, it was considered that his performance had been very creditable, competing as he was against manufacturing companies with considerably greater resources.

Astra hydroplane?

Small motorcycle engines ,ref>cite web|url=http://www.ctie.monash.edu.au/hargrave/train.html%7Ctitle=Emile Train|accessdate=14 June 2014|ebsite= }}</ref> Died 1939

http://gallica.bnf.fr/ark:/12148/bpt6k65523525/f383.image.r=Emile%20Train http://www.ctie.monash.edu.au/hargrave/train.html

AGC[edit]

The Burney scheme involved the creation of two companies, one to construct the airships and a second to take charge of operations. All existing airships and airship material were to be transferred to the operating company free of cost, and the remaining Government airship stations at Cardington and Pulham, were to be leased to this company at a peppercorn rent, with an option for the company of purchasing them. The scheme had three stages. The first involved the construction of one airship of 500,000 cu ft ([convert: unknown unit]) capacity and the necessary ground facilities, and would receive a subsidy of £400,000 during the first year, conditional on the raising of £200,000 through the issue of shares. When a successful flight to India had been accomplished the second stage would begin, during which a further sum of £150,000 would raised by the operating company, while the Government would provide £1,200,000 over a period of three years. During this time enough airships to establish a weekly service to India would be constructed. When a weekly service had been maintained for three months the third stage would begin, a further sum of £150,000 being raised by the operating company and a further subsidy of £1,200,000 being paid by the Government over three years, in return for a bi-weekly service to and from India. On the completion of the third stage, about the end of the seventh year, fee payments would begin, the Government paying an annual sum of £250,000 for for the operation of six airships a further period of eight years, a total of £2,000,000. [25] HL Deb 21 May 1924 vol 57 561

Renault[edit]

1908

1909

zepptable[edit]

Data from Robinson, D. Giants in the Sky, pp.330-338

Class First
flown
No. built Length Diameter Volume Useful lift Power Speed Notes
A 2 July 1900 1 128.02 m
(420 ft 0 in)
11.73 m
(38 ft 6 in)
11,298 m3
(399,000 ft3)
649 kg
(1,430 lb)
2x10.5 kW
(14 hp)
27 kph
(17 mph)
B 17 January 1906 2 126.19  m
(414 ft 0 in)
11.75 m
(38 ft 6 in)
10,370 m3
(366,200 ft3)
2803 kg
(6,180 lb)
2 x 63  kW
(84  hp)
40 km/h
(25 mph)
C 20 June 1908 2 136 m
(446 ft 0 in)
12.95 m
(42 ft 6 in)
15,000 m3
(530,000 ft3)
2903 kg
(6,400 lb)
2×78 kW
(105 hp)
40 km/h
(25 mph)
D 25 August 1909 1 135.64 m
(445 ft 0 in)
12.95 m
(42 ft 6 in)
15,000 m3
(530,000 ft3)
4,400 kg
(9,700 lb)
2x87 kW
(115 hp)
48 km/h
(30 mph)
Enlarged early 1910
and extra engine fitted
Original details listed
E 19 June 1910 2 148.13 m
(486 ft 0 in)
14.02 m
(46 ft 0 in)
19,340 m3 (683,000 ft3) 4990 kg
(11,000 lb)
3x2x89 kW
(120 hp)
60 km/h
(37 mph)
F 2 October 1911 3 140 m
(460 ft 0 in)
14 m
(46 ft 0 in)
7,800 m3
(630,000  ft3)
6486 kg
(14,300 lb)
3×108 kW
(145 hp)
76 km/h
(47.6 mph)
G 14 January 1912 2 148.13 m
(486 ft 0 in)
14.02 m
(46 ft 0 in)
18690 m3
(660,000 ft3)
6486 kg
(14,300 lb)
3x127 kW
(170 hp)
80 kph
(50 mph)
H 7 October 1912 6 LZ 14:
157.94 m
(518 ft 2 in)
142.03 m
466 ft 0 in
14.78 m
48 ft 6 in
19540 m3
(690,000 ft3)
~16,000 3x123 kW
(165 hp)
~48 LZ 14, built for the navy as L 1 and the first of the class was longer, with two extra bays: LZ 17 Sachsen was lengthend by a bay after completion. Useful load and speeds varied between individual ships.
I 9 September 1913 1 157.94 m
(518 ft 2 in)
16.61 m
(54 ft 6 in)
27,000 m3
(953,000 ft3)
11113 kg
(24,500 lbs)
4x123 kW
(165 hp)
(47 mph)
K 10 November 1913 1 148.13 m
(486 ft)
14.78 m
(48 ft 6 in)
736,000 8777 kg
(19,350 ;lbs)
3x (180 hp) (46.6 mph)
L 8 January 1914 2 155.45 m
(510 ft)
14.78 m
(48 ft 6 in)
Example zzz
M 11 May 1914 12 157.94 m
(518 ft 2 in)
14.78 m
48 ft 6 in
794,500 ft3 zzz
O 8 March 1915 2 161.32 m
529 3 in
16 m
52 ft 6 in
Example zzz
P 3 April 1915 22 163.5 m
(536 ft 5 in)
18.7 m
(61 ft 4 in)
31896 m3
(1,162,400 ft3
zzz
Q 21 November 1915 12 177.83 m
583 ft 5 in
18.7 m
(61 ft 4 in)
35,809 m3
1,264,600 ft3
zzz Lengthened P class
R 28 May 1916 198.22 m
649 ft 7 in
23.90 m

78 ft5 in
55,207 m3
,949,600 ft3
zzz
S 21 February 1917 2 196.49 m
644 ft 8 in
78 ft 5 in 55,493 m3
1,959,700 ft3
zzz First of a developmental series intended to fly at high altitude: modified R class with five engines and reduced bomb load
T 1 May 1917 2 196.49 m
(644 ft 8 in)
23.90 m
(78 ft 5 in)
Example zzz Further modification of R class with lighter hull structure
U 22 May 1917 5 196.49 m
(644 ft 8 in)
23.90 m
(78 ft 5 in)
Example zzz
V 16 April 1918 10 196.49 m
(644 ft 8 in)
23.90 m
(78 ft 5 in)
Example zzz The definitive height climber design, with 15 m intervals between transverse frames.
W 26 September 1917 2 Example 23.90 m
(78 ft 5 in)
Example zzz Lengthened V class:

See LZ 104

X 1 July 1918 3 Example Example zzz As first built LZ 112 and LZ 113 were [convert: invalid number] capacity and 693 11 in long and were powered by seven engines. LZ 113 subsequently lengthened and one engine removed.
Y 20 August 1919 2 129.87 m
(426 ft 1 in)
18.69 m
(61 ft 4 in)
(795,000 ft3 (25350 lb) 4x(245&nbsphp) (80.5 mph) The Bodensee and Nordstern. Bodensee enlarged after completion: details for enlrgend version and Nordstern


links[edit]

http://www.flyingmachines.org/gwinfo/no21.html-Carroll Gray on Whitehead http://www.huffingtonpost.com/carroll-f-gray/gustave-whitehead-the-cas_b_4125695.html http://www.flyingmachines.org/gwinfo/statement.html link to petition

http://www.flightglobal.com/pdfarchive/view/1929/1929%20-%200340.html?search=Roe http://www.flightglobal.com/pdfarchive/view/1929/1929%20-%200340.html?search=Gorell%20roe

http://www.scientificlib.com/en/Technology/Literature/RobertMVogel/ElevatorSystemsEiffelTower.html http://www.gutenberg.org/catalog/world/readfile?fk_files=3278124&pageno=1, sane as above but citable page by page.

http://gallica.bnf.fr/ark:/12148/bpt6k106381w/f335.image gussie's big book.

Zepp[edit]

iwm links[edit]

=text[edit]

In Britain, fear of the Zeppelin preceded the war. In 1908 H.G. Wells' novel The War in the Air, serialised in the Pall Mall Magazine had dramatically described the destruction of New York by aerial attack,[26], and the theme became a staple of popular fiction. [27] Reports of the acheivements of Zeppelins led to rumours that Zeppelins had made flights over England [28], and concern about Britain's lack of any defences against attack by airships had been raised in parliament as early as 1909.[29]


Despite the alarm occasioned by the German development of Zeppelins and the promise of Winston Churchill that any incursion would be met by a "swarm of angry hornets"

Responsibility for home defence had been assigned to the Admiralty on 3 September 1914 Official policy was that the best countermeasure was to attempt to destroy the airships in their sheds or intercept them near their bases. [30] On 27 December 1914 the Admiralty issued a detailed plan for a defensive screen for London, with aircraft patrolling

Although navy cryptanalysts, were able to give advance warning of raids since it was the habit of raiding airships to send the signal "Only SKM on board", referring to the (Signalbuch der Kaiserlichen Marine, a codebook which the Germans knew to be compromised.


It was thought that the most effective way to destroy airships in the air was by dropping explosives on them and a variety of devices were developed, including the Ranken dart, the canister bomb, launched from a tube and ignited electrically and the "Fiery Grapnel", a grappling hook with attached explosive charge to be dangled from an attacking aircraft in an attempt to puncture an airship's gasbags and then ignite the escaping gas. However it became clear that the limited cperformance of contemporary aeroplanes made an attack from above almost impossible to acheive: moreover at night spotting an airship from above was difficult. Early experiments with incendiary ammunition had been discouraging, and the development of effective anti airship ammunition was also delayed by the belief that the airships pumped the engine exhaust gases into the envelope. In 1916, following experiments using "zepellinette" targets, which had an inner hydrogen-filled gasbag inside a second envelope filled with exhaust gases a combination of explosive rounds to damage the gasbags and incendiary rounds to ignite escaping hydrogen was developed, leading to the first successes by defending aircraft.


Following a lengthy period of interdeparmental dispute between the War Office and the Admiralty the defences were reorganised at the beginning of 1916, with the RNAS made responsible for offshore patrols, responsibility passing to the RFC once the airships were over land.


Proposals to bomb England were first made by Paul Behncke, deputy chief of the German Naval Staff, in August 1914.[31]

Alfred von Tirpitz "The measure of the success will lie not only in the injury which will be caused to the enemy, but also in the significant effect it will havein diminuishing the enemy's determination to prosecute the war"[32] However there were concerns about


This campaign was approved by the Kaiser on 7 January 1915, who at first forbade attacks on London, fearing that his relatives in the British royal family might be injured, and the first attack on England was made on 9 January, when two Army airships dropped bombs on Yarmouth and King's Lynn. An Imperial Order dated 12 February authorised the bombing of London's docks, which was interpreted by the German General Staff as permitting targets east of Charing Cross.[33] This interpretation was formally accepted by the Kaise on 5 May 1915.[34] These restrictions were lifted in May.


Early raids prompted alarmist stories about German agents using car headlights to guide Zeppelins to their targets,[35] and there was even a rumour that a Zeppelin was operating from a concealed base in the Lake District. ==

Pilgrim 100B Aircraft[edit]

(Fairchild 100#Variants

Hitlist[edit]

(121.54.13.51)IP edits

1[edit]

[10]

  1. In the Summer of His Years (Bee Gees song)
  2. The Earnest of Being George
  3. Barker of the UFO
  4. Happiness (Barry Gibb song)
  5. In My Own Time (song)

nominated

  1. I Have Decided to Join the Airforce
  2. Cucumber Castle (song)
  3. King Kathy
  4. The Three Kisses of Love
  5. Paradise (Bee Gees song)
  6. Moonlight (Barry Gibb song)
  7. Soldier's Son
  8. Drown On the River
  9. Underworld (song)
  10. I Close My Eyes
  11. Horizontal (song)
  12. Close Another Door
  13. How Many Birds
  14. Daytime Girl
  15. Birdie Told Me
  16. Jingle Jangle
  17. The Change Is Made
  18. Kilburn Towers
  19. The Lord (song)
  20. Lord Bless All
  21. Moonlight (Barry Gibb song)

User:Sam navera[edit]

[[11]]

  1. I Don't Think It's FunnyI really do not
  2. [[How Love Was True
  3. Town of Tuxley Toymaker, Part 1
  4. One Bad Thing Actually, about 40 so far.
  5. The Day Your Eyes Meet Mine
  6. Smile for Me (song)
  7. Cowman, Milk Your Cow
  8. Summer Ends
  9. Save Me, Save Me
  10. You Wouldn't Know (Bee Gees song)
  11. To Be or Not to Be (song) By opposing, end them is my opinion.
  12. Follow the Wind
  13. Playdown
  14. Little Miss Rhythm and Blues

Saints have mercy.

User:PogiJmon[edit]

[[12]]

  1. The Loner (Maurice Gibb song)
  2. Lamplight
  3. Farmer Ferdinand Hudson
  4. Mother and Jack
  5. Giving Up The Ghost (song)
  6. Please Read Me

nominated

  1. Lemons Never Forget
  2. Really and Sincerely
  3. Never Say Never Again (Bee Gees song)
  4. Suddenly (Bee Gees song)
  5. We Lost the Road
  6. You Know It's For You
  7. Alone Again (Bee Gees song)
  8. I Laugh in Your Face
  9. Sinking Ships (song)
  10. Sincere Relation
  11. Sound of Love (song)
  12. Every Second, Every Minute
  13. Lay It on Me (Bee Gees song)
  14. All by Myself (Bee Gees song)
  15. Coalman
  16. Swan Song (song)
  17. Seven Seas Symphony
  18. Country Woman
  19. Why (Andy Gibb song)
  20. Wait Forever
  21. My Lover's Prayer(40)
  22. Face to Face (Barry Gibb and Olivia Newton-John song)
  23. Black Diamond (Bee Gees song)
  24. I Lay Down and Die
  25. My Thing
  26. 2 Years On (song)
  27. I Am the World
  28. Hold Her in Your Hand
  29. Irresistible Force (song)
  30. Stay Alone
  31. The Longest Night (song)
  32. Kitty Can
  33. Claustrophobia (song)
  34. Marley Purt Drivequite a lot of unsucessful covers
  35. Odessa (City on the Black Sea)
  36. Such a Shame (Bee Gees song)
  37. Bury Me Down By the River
  38. I'll Kiss Your Memory
  39. Wind of Change (Bee Gees song)
  40. On Time (song)
  41. I Want Home
  42. Born a Man

Bleriot[edit]

XXV[edit]

A complete departure from the tractor monoplane designs.

Canard powered by a 50 hp Gnome Omega dtiving a pusher propeller Directional control effected by a pair of diminuative rudders one on each wingtip [36]

Specifications[edit]

Data from [37]

General characteristics

  • Crew: 1
  • Capacity: 1 passenger
  • Length: 7.32 m (24 ft 0 in)
  • Wingspan: 9.78 m (32 ft 1 in)
  • Height: 2.39 m (7 ft 10 in)
  • Empty weight: 848 kg (1,870 lb)
  • Gross weight: 2,770 kg (6,107 lb)
  • Powerplant: 1 × Le Rhone rotary piston engine, 60 kW (80 hp)

Performance

  • Maximum speed: 166 km/h; 90 kn (103 mph)
  • Endurance: 3 hr

References[edit]

  1. ^ Chanute, Octave. (1893) [Progress in Flying Machines, The American Engineer and Railroad Journal, Dec 1893.
  2. ^ https://www.flightglobal.com/pdfarchive/view/1911/1911%20-%200008.html
  3. ^ https://www.flightglobal.com/pdfarchive/view/1912/1912%20-%200240.html
  4. ^ https://www.flightglobal.com/pdfarchive/view/1911/1911%20-%200763.html
  5. ^ http://www.initiartmagazine.com/interview.php?IVarchive=47
  6. ^ http://www.spikeisland.org.uk/events/exhibitions/ab-ovo/
  7. ^ http://www.tate.org.uk/whats-on/tate-st-ives/exhibition/studio-and-sea
  8. ^ [Shenstone for B.O.A.C] Flight International 3 November 1964, p779
  9. ^ https://www.flightglobal.com/pdfarchive/view/1969/1969%20-%202940.html?search=Beverley Shenstone
  10. ^ http://www.humanpoweredflying.propdesigner.co.uk/html/1950-s_revival.html
  11. ^ [1] 4 March 1920
  12. ^ "Ten Years Ago", Flight (excerpts from the Auto, Flight’s precursor and sister journal), Flightglobal: 908, 19 October 1916 .
  13. ^ Orna 1956, p. 365.
  14. ^ "L'Aéroplane à Moteur de M. Vuia". L'Aérophile (in French): 195–6. September 1906. 
  15. ^ Cite error: The named reference L'Aérophile Oct 1906 was invoked but never defined (see the help page).
  16. ^ a b "L'Aéroplane sur Roues de M. Vuia". L'Aérophile (in French): 53–4. February 1906.  Cite error: Invalid <ref> tag; name "L'Aérophile Feb. 1906" defined multiple times with different content (see the help page).
  17. ^ "L'Aéroplane Vuia No.2". l'Aérophile (in French): 194. June 1907. 
  18. ^ "Essais de L'Aéroplane Vuia No.2". l'Aérophile (in French): 196. July 1907.  Unknown parameter |trans_title= ignored (help)
  19. ^ Gibbs-Smith 1970, p. 144.
  20. ^ Gibbs-Smith, Charles Harvard (3 April 1959). "Hops and Flights" Flight. p. 469
  21. ^ Gibbs-Smith 1970, pp. 100–2.
  22. ^ Cite error: The named reference Hadirca was invoked but never defined (see the help page).
  23. ^ "Paris-Madrid Race". Flight: 455. 27 May 1911. 
  24. ^ "European Circuit". Flight: 596. 8 July 1911. 
  25. ^ Christopher Thomson, Secretary of State for Air (21 May 1924). http://hansard.millbanksystems.com/lords/1924/may/21/airship-policy#S5LV0057P0_19240521_HOL_69 |chapter-url= missing title (help). Parliamentary Debates (Hansard). House of Lords. col. 561. 
  26. ^ Lavelle, Brian C. (2005). Zeppelinitis. University Press of the Pacific. p. 2. 
  27. ^ Lavelle, Brian C. (2005). Zeppelinitis. University Press of the Pacific. p. 8. 
  28. ^ "The Reported Visits Of Airships". The Times (40145). London. 26 February 1913. col E, p. 8. 
  29. ^ Hon. John Douglas-Scott-Montagu (16 March 1909). http://hansard.millbanksystems.com/lords/1909/mar/16/aerial-navigation#S5LV0001P0_19090316_HOL_20 |chapter-url= missing title (help). Parliamentary Debates (Hansard). Lords. col. 456–462. 
  30. ^ Cole and Cheesman, p. 7
  31. ^ Robinson 1971, p. 50
  32. ^ Robinson 1971, p. 54
  33. ^ Robinson 1971 p. 67
  34. ^ Robinson 1971 p. 69
  35. ^ "Plea For Aeroplanes At King's Lynn". News. The Times (40759). London. 23 January 1915. col F, p. 10. 
  36. ^ New Bleriot"Canard" Flight 30 September 1911
  37. ^ Particulars of all the machines at the Paris Show Flight 1 January 1920

XXVII[edit]

XVIII[edit]

The Bleriot Type XVIII Popular was an aircraft produced by Bleriot Aeronautique in France in 1911. It was exhibited at the third Paris Aero Salon in 1911.http://www.flightglobal.com/pdfarchive/view/1911/1911%20-%201124.html

Specifications[edit]

Data from [1]

General characteristics

  • Crew: 1
  • Capacity: 1 passenger
  • Length: 7.62 m (25 ft 0 in)
  • Wingspan: 8.8 m (29 ft)
  • Powerplant: 1 × Anzani 3 cylinder semi-radial piston engine, 26 kW (35 hp)

Performance

  • Maximum speed: 105 km/h (65 mph; 57 kn)

Shorthorn[edit]

Previous[edit]

Prototype conSTRUCTED BY Maurice Mallet {Mallet Surcoef)http://www.flightglobal.com/pdfarchive/view/1909/1909%20-%200036.html?search=maurice%20farman...talks of possible use of REP engine, double propellers & lack of side curtains http://www.flightglobal.com/pdfarchive/view/1909/1909%20-%200076.html?search=maurice%20farman

1910[edit]

In May 1910 Takes Henri for a flight[2] 21 May 80 km (50 mi) cross-country flight carrying a passenger in order to make an appearance at the opening of Henri's new airfield at [3]

world's record for duration of flight. Maurice Tabuteau Etamps for 6h. im. 35s., covering 465 kiloms. General dimensions

Exhibited at the 1910 Paris Salon, by which time the side curtains had been removed and a rear elevator added to the opper tail surface http://www.flightglobal.com/pdfarchive/view/1910/1910%20-%200950.html?search=maurice%20farman http://gallica.bnf.fr/ark:/12148/bpt6k65523525/f132.image

Unequal span biplane Innermost pair of interplane struts solid ash, others hollow

Data from Maurice Farman Biplane Flight, 6 July 1912, p.604.

General characteristics

  • Length: 12.14 m (39 ft 10 in)
  • Upper wingspan: 15.39 m (50 ft 6 in)
  • Lower wingspan: 11 m (37 ft)
  • Wing area: 48 m2 (520 sq ft)
  • Powerplant: 1 × Reneault air-cooled V8 piston engine, 52 kW (70 hp)
  • Propellers: 2-bladed, 2.90 m (9 ft 6 in) diameter

Performance

Euler[edit]

Interesting triplane flying-boat. [13]

Paulhan triplan[edit]

1911 military trials http://gallica.bnf.fr/ark:/12148/bpt6k65523525/f494.image.r=paulhan.langEN http://www.flightglobal.com/pdfarchive/view/1911/1911%20-%200787.html?search=paulhan

The Cody V in front of Cody's shed on Laffan's Plain

Nieuport-Delage NiD-941[edit]

Two seater flying wing

First flown by Joseph Sadi-Lecointe Exhibited at the '32 Paris Aero Show http://www.flightglobal.com/pdfarchive/view/1932/1932%20-%201188.html?search=Morane%20saulnier%20%20Type%20132

http://www.aviafrance.com/nieuport-delage-nid-941-aviation-france-918.htm


==B.E.9 edit The intention of the designers was to combine the high performance of tractor configuration aircraft with a good field of fire for the observer's machine gun, as provided by pushers. This was achieved by modifying an example of the B.E.2c by deleting the front cockpit to allow the engine to be moved aft and adding a small nacelle to accommodate the observer and a Lewis gun on a trainable mount in front of the propeller. The wingspan was also increased, and a larger fin was fitted.[4]

Stability Jane[edit]

Catalogue number RAE-O 848 The dep photo.

Aviation in Britain Before the First World War; Silver Queen RAE-O639.jpg

identify this, could be BE1

B.E.1., originally captioned 'The Silent Army Aeroplane'. Note radiator between cabane struts.
QANTAS B.E.2e.jpg

[14]BE2b with cowled sump & V-strut undercarriage [15] JM Bruce in Flight

Royal Aircraft Factory B.E.1 Silent army aeroplane.jpg

[16]... R.E.8 fitted with a Davis Gun, type not mrtioned in dg article.

B.E.1[edit]

It was handed over to the Air Battalion, being given the serial number 201. used for experiments in wireless telegraphy, and was used to conduct the first artillery shoot using an aeroplane to direct the fire.

B.E.2[edit]

The B.E.2 was not so called because it was considered a separate type. At that time the numbers allocated are more properly regarded as constructors numbers rather than type designations.[5] B.E.2 was almost identical to the B.E.1, differing principally in being powered by a 60 hp (45 kW) air-cooled Renault V-8 engine and in having equal-span wings. Like B.E.1 it was nominally a rebuild of an existing aircraft, but it is unclear as to whether this was a Bristol Boxkite or a Breguet. It first flew on 1 February 1912, again with de Havilland as the test pilot.[6] The Renault proved a much more satisfactory powerplant than the Wolseley fitted to B.E.1, and performance was further improved when a 70 hp (52 kW) model was fitted in May that year,[7]

B.E.2 was flown extensively at the Military Aieroplane Competition held on Salisbury Plain in August 1912. It was not allowed to formally compete in the trials sinc O'Gorman was one of the judges, but its performance was clearly superior to most of the aircraft competing: on 12 August 1912 it set a British altitude record of 10,560 ft (3,219 m)., flown by de Havilland with Major F. H. Sykes as passenger. [8]


B.E.5, ENV engined rebuild of a Howard Wright biplane first flown 27 June 1912 and handed over to the Royal Flying Corps (serial number 205)on 18 July. A few weeks later it was fitted with the Renault V8 engine On 27th May 1913 it crashed killing the pilot Desmond Cox


On 27th May 1913 it crashed killing the pilot Desmond Cox B.E.6,

rr[edit]

  1. ^ [[[FlightInternational|Flight]] 30 December 1911, p. 1132.
  2. ^ {{cite journal|journal=Template:Flight International
  3. ^ {{cite journal|journal=Template:Flight International
  4. ^ Hare 1990, pp. 177–178.
  5. ^ Hare 1990 p. 15
  6. ^ Bruce 1982, p.344.
  7. ^ Hare 1990, p. 138.
  8. ^ Bruce 2 April 1954, p.394

more[edit]

http://hansard.millbanksystems.com/written_answers/1914/apr/02/royal-flying-corps#S5CV0060P0_19140402_CWA_39 BE's stopped from flying?? needs chasing up.

What is Wrong with the military Wing 28 March 1914, p.323.] (comment on Jix's speech in commons]

[17] refers to ban & mods made.

[18]

Pioneers[edit]

Ferber[edit]

Starting in 1898, built and attemped to fly a series of gliders;

Attempted (unsuccessfully) to replicate the Wright 1901 Glider from photographs;

designed a series of aircraft (Ferber I through Ferber IX) designed, constructed, and flew the first tractor configuration biplane (May 1905);[1] (†) Voisin biplane, Boulogne, France, 22 september 1909[2]

Mc[edit]

Francis McClean (1876–1955) Irish One of the founding members of the Royal Aero Club, and sponsor of civil and naval aviation in the UK. Owned the ;and on which the aerodromes at Leysdown and then Eastchurch were built. Flew as passenger with Wilbur Wright at Le Mans in December 1908. At the start of 1909 ordered an aircraft from Short Brothers, the first airplane built by the company. This was the first of of sixteen aircraft bought before 1914, all but one built by Short Brothers.


Awarded Royal Aero Club Aviators Certificate Number 21 in a Short S.27 20 September 1910. In February 1911 he offered the Admiralty the use of his aircraft to teach naval and military personnel to fly. In 1914 he made a flight following the course of the Nile between Alexandria and Khartoum in a specially built four-seater aircraft, the Short S.80. Also a pioneer in aerial photography.


Table[edit]

List of aviation pioneers
Name DOB
DOD
Country
birth
(work)
Pioneer Type Achievements
White, G Sir George White 1881-12-2121 Dec 1881
21 Apr 1919
United Kingdom Industrialst Propeller]] 1910-02-22Founder of [[Bristol Aircraft Company, among the first aircraft manufacturers to be started as a solidly financed business venture.
Pemberton Billing, Noel Noel Pemberton-Billing 1881-12-2121 Dec 1881
21 Apr 1919
United Kingdom Promoter Propeller]] 1912-02-22Founded one of Britain's first airfields at Fambridge in Essex. Later founded what would become Supermarine Aircraft. Briefly served in the RNAS before resigning and starting a parliamentary career, with a declared interest in aviation issues.

2013}}</ref> (†) Type 54 Viking, Rouen, France, en route to Paris.

  1. ^ Gibbs-Smith, Charles H. (3 April 1959). "Hops and Flights: A roll call of early powered take-offs". Flight. 75 (2619): 469. Retrieved 30 August 2013. 
  2. ^ “L’Estrange” (28 January 1911). "The use of accidents". Flight (109): 69. Retrieved 30 August 2013. 

Martin Handasyde 1912[edit]

1912 monoplane
Role Sports aircrft
National origin United Kingdom
Manufacturer Martin-Handasyde

The?? was a two-seat monoplane constructed by Martin-Handasyde in 1912.

Closely resembling the earlier designs of the company, a shoulder-wing monoplane with square-tipped tapered wings each braced by wires led over a pair of spruce kingposts at just under half span. Two-spar wings, each spar being a tapered box-girder formed of an ash upper and lower member joined by plywood webs. The fuselage had an inverted trianglar section, with four ash longerons connected and braced by thin plywood, which had lightening holes cut in the aft part of the fuselage, which was covered with fabric. Aluminium condensers for the engine's steam cooling system were mounted either side of the fuselage.

Specifications[edit]

Data from Flight 1 January 1913 Martin Handasyde monoplane

General characteristics

  • Crew: 1
  • Capacity: 1 passenger
  • Length: 35 ft 4 in (10.77 m)
  • Wingspan: 42 ft 6 in (12.95 m)
  • Height: 7 ft 10 in (2.39 m)
  • Wing area: 290 sq ft (27 m2)
  • Powerplant: 1 × Antoinette steam-cooled V-8 piston engine, 65 hp (48 kW)
  • Propellers: 2-bladed Regy, 8 ft 6 in (2.59 m) diameter

References[edit]

Sommer monoplane[edit]

The Sommer type E monoplane was an aircraft produced by Roger Sommer in France in 1911

Design[edit]

Square section fuselage constructed from ash

Operational history[edit]

Specifications[edit]

Data from [1]

General characteristics

  • Crew: 1
  • Capacity: 1 passenger
  • Length: 7.35 m (24 ft 1 in)
  • Wingspan: 8.92 m (29 ft 3 in)
  • Wing area: 16 m2 (170 sq ft)
  • Empty weight: 260 kg (573 lb)
  • Gross weight: 460 kg (1,014 lb)
  • Powerplant: 1 × Gnome Omega 7 cylinder rotary piston engine, 37 kW (50 hp)

Performance

  • Maximum speed: 105 km/h (65 mph; 57 kn)
  • Endurance: 3 hr

References[edit]

Bleriot XXVII[edit]

the Blériot XXVII was a monoplane racing aircraft produced in 1911. http://www.flightglobal.com/pdfarchive/view/1911/1911%20-%200851.html The overall length of the machine is metres, and the wings, which have a supporting surface of

sq. metres, span 8'90 metres from tip to tip. This new model, which weighs 4 3 0 kilogs., has been timed to attain

a speed of kiloms. an hour.

Specifications[edit]

Data from [1]

General characteristics

  • Crew: 1
  • Length: 7.0 m (23 ft 0 in)
  • Wingspan: 8.0 m (26 ft 3 in)
  • Wing area: 12 m2 (130 sq ft)
  • Powerplant: 1 × Gnome Omega 7 cylinder rotary piston engine, 37 kW (50 hp)
  • Propellers: 2-bladed

Performance

  • Maximum speed: 130 km/h (81 mph; 70 kn)

Sigrist[edit]

Frederick Sigrist M.B.E., F.R.Ae.s. (1884 - 10 December 1956) was a British aeronautical engineer who played an important part in the establishment and management of the Sopwith Aviation Company and later co-founded Hawker Aircraft.

After completing an engineering apprenticeship Sigrist was employed in 1909 by Thomas Sopwith to work as a mechanic maintaining his cars and yachts. When Sopwith's interests turned to aviation Sigrist's responsibilities were extended to include working on his aircraft, and he played an important part in establishing Sopwith's fame as a pilot: in his hands the engine of Sopwith's Howard Wright biplane , previously incapable of running for more than a few minutes, was made reliable enough for Sopwith to win the 1910 Michelin Cup for endurance and the Baron de Forest prize for the longest flight from Britain to continental Europe, the latter feat won by a flight lasting three and a half hours.,[2]

When Sopwith founded the Sopwith Aviation Company in 1912 Sigrist became the works manager, and was largely responsible for designing many of the early Sopwith aircraft, including the Sopwith Tabloid. He continued to work in this capacity until the dissolution of Sopwith after the First World War, then becoming one of the founders of the Hawker Aircraft Company.

in 1927 the formation of Reid and Sigrist, Ltd., . Fred Sigrist was formerly joint managing director of the Gloster Aircraft Co., Ltd., , Armstrong Siddeley, A. V. Roe, Air Service Training and Armstrong Whitworth Aviation.

In 1939 asthma forced him to leave England for Nassau in the Bahamas, where he occupied himself as a property developer.[3] where he died on 10 December 1956.

http://www.flightglobal.com/pdfarchive/view/1956/1956%20-%201789.html 21 December 1956

Ponnier[edit]

Biplane [19]

Racer[edit]

Ponnier racing monoplane
Role racing aircraft
National origin France
Manufacturer Ponnier
Designer Alfred Pagny
First flight 1913


Design[edit]

Specifications[edit]

Data from The Ponnier Racing MonoplaneFlight,22 November 1913.

General characteristics

  • Crew: 1
  • Length: 5.41 m (17 ft 9 in)
  • Wingspan: 7.16 m (23 ft 6 in)
  • Wing area: 8.7 m2 (94 sq ft)
  • Powerplant: 1 × Gnome double Lambda Twin-row 14 cylinder air cooled rotary engine, 120 kW (160 hp)
  • Propellers: 2-bladed Chauvière, 2.08 m (6 ft 10 in) diameter

Performance

  • Cruise speed: 117 km/h; 63 kn (73 mph)

Hanriot[edit]

Hanriot 1912 monoplane
Role sports aircraft
National origin France
Manufacturer Hanriot
Designer Alfred Pagny
First flight 1912

Design[edit]

The 1912 Hanriot monoplane was an early French aircraft

Designed by AlfredPagny, who had been responsible for the design of the Nieport monoplane, which the Hanriot closely resembled. It had a deep rectangular section fuselage with the longerons curving inwards at the front

wings and tailplane folding

Two examples built by Hewlett & Blondeau for the British Hanriot company were flown at the 1912 Military Aircraft Trials held on Salisbury Plain in August 1912, flown by Sippé and Bielovukic.

Specifications[edit]

Data from [4]

General characteristics

  • Crew: 1
  • Length: 7.32 m (24 ft 0 in)
  • Wingspan: 12.73 m (41 ft 9 in)
  • Empty weight: 445 kg (981 lb)
  • Powerplant: 1 × Gnome double Omega Twin-row 14 cylinder air cooled rotary eengine, 75 kW (100 hp)
  • Propellers: 2-bladed Chauvière, 2.55 m (8 ft 4 in) diameter

Performance

  • Cruise speed: 117 km/h; 63 kn (73 mph)

Notes[edit]

  1. ^ [2] [[[FlightInternational|Flight]] 30 September 1911, p. 853.
  2. ^ The Sopwith Tabloid, Schneider and BabyFlight 8 November 1957
  3. ^ The Times. London (53713): 14. 13 December 1956.  Text "accessed 25 December 2012" ignored (help); Missing or empty |title= (help)
  4. ^ The Hanriot MonoplaneFlight,29 October 1912.

RS[edit]

Raymond Saulnier (1881 - 1964) was a French aircraft designer. He was largely responsible for th . In 1905, Raymond Saulnier graduated from the Ecole Centrale. After military service in Poitiers, followed by a few months working in a bank, he travelled to South America, wher there were a number of large scale projects sont en cours : development of the ports de Para et de Manaos, construction of railways, modernisation de villes, etc...

Après quelques périties et dangers réels (raids d'Indiens Jivaros, par exemple), il rentre en France, à Paris. Between May 1908 and October 1909 he worked with Blériot. In 1910 he designed a pair of monoplanes [1] This had lateral control by altering the angle of incidence of the entire wing. To be flown by Jacques de Lesseps.

Léon and Robert Morane and their long time close friend Raymond Saulnier formed the Sociètè Anonyme des Aèroplanes Morane-Saulnier on October 10, 1911 at Puteaux (Paris region)

At the same tihe was editor in chief of a magazine devoted to aviation, and wrote écrit Etude, centrage et classification des Aéroplanes.

Then, with finacial support form his mother and friends, sa mère et de quelques amis, he was able to start his own business. La Société des Aéroplanes Raymond Saulnier set up workshop at Courbevoie où seront produits plusieurs appareils et delà transported for testing to Louvercy, near Mourmelon-le-Grand dans la Marne.

C'est là que R. Saulnier a son terrain d'essais et un atelier de réparations. Dès 1910, il se met au pilotage in order to test his designs himself. Il n'a cependant jamais tenté d'obtenir son brevet de pilote, trop occupé. Le capital de l'entreprise n'étant pas suffisant pour continuer la fabrication, il doit cesser son activité. But he had established a reputation.

At this time he was also the editor in chief of périodique d'Aviation, and rote Etude, centrage et classification des Aéroplanes. It was a success and the book fera autorité en la matière.

C'est là que R. Saulnier a son terrain d'essais et un atelier de réparations. Dès 1910, il se met au pilotage pour essayer lui-même ses appareils. Il n'a cependant jamais tenté d'obtenir son brevet de pilote, trop occupé.Le capital de l'entreprise n'étant pas suffisant pour continuer la fabrication, il doit cesser son activité. Mais il s'était fait un nom, une réputation.

March 2 1964 [2]

GG[edit]

George and Jobling Biplane
Role Experimental aircraft
Manufacturer George and Jobling
Designer A.E. George
First flight 1910
Number built 1

The George and Jobling Biplane was an early British aircraft designed by A.E. George and built by George and Jobling, who manufactured bicycles and coachwork for cars in Newcastle. George had bought J.T.C. Moore-Brabazon's Bird of Passage Voisin biplane and used it to teach himself to fly.

A biplane of the Farman configuration, with a front elevator and a single rear-mounted horizontal stabiliser with the rudder below it. Both elevator and tail surfaces were carried on bamboo booms. Lateral control by Curtis-type planes mounted at mid-gap on the forward outer interplane struts. The aircraft was remarked upon for its use of hollow section wooden spars. It was powered by 60 hp Green engine driving a two-bladed [[pusher (aircraft)|pusher] propeler on a driveshaft above the engine.

two mainwheels, each with a sprung skid mounted in front of it


Specifications[edit]

Data from Lewis 1962 p.357

General characteristics

  • Crew: 1
  • Length: 31 ft 0 in (9.45 m)
  • Wingspan: 42 ft 6 in (12.95 m)
  • Wing area: 352 sq ft (32.7 m2)
  • Empty weight: 662 lb (300 kg)
  • Gross weight: 862 lb (391 kg)
  • Powerplant: 1 × Green C.4 4-cylinder inline water-cooled, 60 hp (45 kW)
  • Propellers: 2-bladed, 9 ft (2.7 m) diameter

Performance

  • Maximum speed: 48 mph (77 km/h; 42 kn)
  • Wing loading: 2.65 lb/sq ft (12.9 kg/m2)

See also[edit]

similar aircraft= sequence= lists= see also=

}}

Notes[edit]

Voisin tractor[edit]

http://www.flightglobal.com/pdfarchive/view/1909/1909%20-%200797.html?search=voisin%20tractpr December 11 1909 The New Voisin Biplane 799 http://gallica.bnf.fr/ark:/12148/bpt6k6552191k/f451.image

Specifications[edit]

General characteristics

  • Crew: 1
  • Wingspan: 12.95 m (42 ft 6 in)
  • Powerplant: 1 × Voisin , 45 kW (60 hp)
  • Propellers: 2-bladed, 2.7 m (9 ft) diameter

Performance

See also[edit]

similar aircraft= sequence= lists= see also=

}}

Notes[edit]

ET[edit]