From Wikipedia, the free encyclopedia
Jump to: navigation, search
Vacuolar protein sorting 33 homolog B (yeast)
Symbols VPS33B ; FLJ14848
External IDs OMIM608552 MGI2446237 HomoloGene10261 GeneCards: VPS33B Gene
RNA expression pattern
PBB GE VPS33B 44111 at tn.png
PBB GE VPS33B 218415 at tn.png
More reference expression data
Species Human Mouse
Entrez 26276 233405
Ensembl ENSG00000184056 ENSMUSG00000030534
UniProt Q9H267 P59016
RefSeq (mRNA) NM_001289148 NM_178070
RefSeq (protein) NP_001276077 NP_835171
Location (UCSC) Chr 15:
91 – 91.02 Mb
Chr 7:
80.27 – 80.29 Mb
PubMed search [1] [2]

Vacuolar protein sorting-associated protein 33B is a protein that in humans is encoded by the VPS33B gene.[1][2]

Vesicle mediated protein sorting plays an important role in segregation of intracellular molecules into distinct organelles. Genetic studies in yeast have identified more than 40 vacuolar protein sorting (VPS) genes involved in vesicle transport to vacuoles. This gene is a member of the Sec-1 domain family, and encodes the human ortholog of rat Vps33b which is homologous to the yeast class C Vps33 protein. The mammalian class C Vps proteins are predominantly associated with late endosomes/lysosomes, and like their yeast counterparts, may mediate vesicle trafficking steps in the endosome/lysosome pathway.[2]

Model organisms[edit]

Model organisms have been used in the study of VPS33B function. A conditional knockout mouse line called Vps33btm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[3] Male and female animals underwent a standardized phenotypic screen[4] to determine the effects of deletion.[5][6][7][8] Additional screens performed: - In-depth immunological phenotyping[9]


  1. ^ Pevsner J, Hsu SC, Hyde PS, Scheller RH (Feb 1997). "Mammalian homologues of yeast vacuolar protein sorting (vps) genes implicated in Golgi-to-lysosome trafficking". Gene 183 (1-2): 7–14. doi:10.1016/S0378-1119(96)00367-8. PMID 8996080. 
  2. ^ a b "Entrez Gene: VPS33B vacuolar protein sorting 33 homolog B (yeast)". 
  3. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley. 
  4. ^ a b "International Mouse Phenotyping Consortium". 
  5. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750. 
  6. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  7. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  8. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMID 23870131. 
  9. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium". 

Further reading[edit]