Variable-length array

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In computer programming, a variable-length array (VLA), also called variable-sized, runtime-sized, is an array data structure whose length is determined at run time (instead of at compile time).[1] In C, the VLA is said to have a variably modified type that depends on a value (see Dependent type).

The main purpose of VLAs is to simplify programming of numerical algorithms.

Programming languages that support VLAs include Ada, Algol 68 (for non-flexible rows), APL, C99 (although subsequently relegated in C11 to a conditional feature, which implementations are not required to support;[2][3] on some platforms, could be implemented previously with alloca() or similar functions) and C# (as unsafe-mode stack-allocated arrays), COBOL, Fortran 90, and J. And also Object Pascal (the language used in Borland Delphi).

Memory[edit]

Allocation[edit]

Implementation[edit]

C99[edit]

The following C99 function allocates a variable-length array of a specified size, fills it with floating-point values, and then passes it to another function for processing. Because the array is declared as an automatic variable, its lifetime ends when read_and_process() returns.

float read_and_process(int n)
{
    float vals[n];

    for (int i = 0; i < n; ++i)
        vals[i] = read_val();

    return process(n, vals);
}

In C99, the length parameter must come before the variable-length array parameter in function calls.[1]

Linus Torvalds has expressed his displeasure in the past over VLA usage for arrays with predetermined small sizes, with comments like "USING VLA'S IS ACTIVELY STUPID! It generates much more code, and much slower code (and more fragile code), than just using a fixed key size would have done." [6] With the Linux 4.20 kernel, Linux kernel is effectively VLA-free.[7]

Ada[edit]

Following is the same example in Ada. Ada arrays carry their bounds with them, so there is no need to pass the length to the Process function.

type Vals_Type is array (Positive range <>) of Float;

function Read_And_Process (N : Integer) return Float is
   Vals : Vals_Type (1 .. N);
begin
   for I in 1 .. N loop
      Vals (I) := Read_Val;
   end loop;
   return Process (Vals);
end Read_And_Process;

Fortran 90[edit]

The equivalent Fortran 90 function is

function read_and_process(n) result(o)
    integer,intent(in)::n
    real::o

    real,dimension(n)::vals
    integer::i

    do i = 1,n
       vals(i) = read_val()
    end do
    o = process(vals)
end function read_and_process

when utilizing the Fortran 90 feature of checking procedure interfaces at compile time; on the other hand, if the functions use pre-Fortran 90 call interface, the (external) functions must first be declared, and the array length must be explicitly passed as an argument (as in C):

function read_and_process(n) result(o)
    integer,intent(in)::n
    real::o

    real,dimension(n)::vals
    real::read_val, process
    integer::i

    do i = 1,n
       vals(i) = read_val()
    end do
    o = process(vals,n)
end function read_and_process

Cobol[edit]

The following COBOL fragment declares a variable-length array of records DEPT-PERSON having a length (number of members) specified by the value of PEOPLE-CNT:

DATA DIVISION.
WORKING-STORAGE SECTION.
01  DEPT-PEOPLE.
    05  PEOPLE-CNT          PIC S9(4) BINARY.
    05  DEPT-PERSON         OCCURS 0 TO 20 TIMES DEPENDING ON PEOPLE-CNT.
        10  PERSON-NAME     PIC X(20).
        10  PERSON-WAGE     PIC S9(7)V99 PACKED-DECIMAL.

The COBOL VLA, unlike that of other languages mentioned here, is safe because COBOL requires one to specify the maximal array size – in this example, DEPT-PERSON cannot have more than 20 items, regardless of the value of PEOPLE-CNT.

C#[edit]

The following C# fragment declares a variable-length array of integers. The "unsafe" keyword would require an assembly containing this code to be marked as unsafe.

unsafe void declareStackBasedArray(int size)
{
    int *pArray = stackalloc int[size];
    pArray[0] = 123;
}

References[edit]

  1. ^ a b "Variable Length Arrays". Archived from the original on 2018-01-26.
  2. ^ "Variable Length – Using the GNU Compiler Collection (GCC)".
  3. ^ ISO 9899:2011 Programming Languages – C 6.7.6.2 4.
  4. ^ "Code Gen Options - The GNU Fortran Compiler".
  5. ^ §6.5.3.4 and §7.20.3 of the C11 standard (n1570.pdf)
  6. ^ "LKML: Linus Torvalds: Re: VLA removal (was Re: [RFC 2/2] lustre: use VLA_SAFE)". lkml.org.
  7. ^ "The Linux Kernel Is Now VLA-Free: A Win For Security, Less Overhead & Better For Clang - Phoronix". www.phoronix.com.