Vela Pulsar

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Vela Pulsar
Vela Pulsar jet.jpg
The Vela Pulsar and its surrounding pulsar wind nebula
Observation data
Epoch J2000      Equinox J2000
Constellation Vela
Right ascension  08h 35m 20.65525s[1]
Declination −45° 10′ 35.1545″[1]
Apparent magnitude (V) 23.6
Astrometry
Distance959+248
−163
 ly
(294+76
−50
[2] pc)
Other designations
HU Vel, PSR J0835-4510, PSR B0833-45, 4U 0833-45, 2CG 263-02, 2E 0833.6-4500, 3EG J0834-4511, H 0833-450, INTEGRAL1 5, SNR G263.6-02.8
Database references
SIMBADdata

The Vela Pulsar (PSR J0835-4510 or PSR B0833-45) is a radio, optical, X-ray- and gamma-emitting pulsar associated with the Vela Supernova Remnant in the constellation of Vela.

Characteristics[edit]

Vela is the brightest pulsar (at radio frequencies) in the sky and spins 11.195 times per second[3] (i.e. a period of 89.33 milliseconds—the shortest known at the time of its discovery) and the remnant from the supernova explosion is estimated to be travelling outwards at 1,200 km/s (750 mi/s).[4] It has the third-brightest optical component of all known pulsars (V = 23.6 mag)[5] which pulses twice for every single radio pulse. The Vela pulsar is the brightest persistent object in the high-energy gamma-ray sky.

Glitches[edit]

Glitches are sudden spin-ups in the rotation of pulsars. Vela is the best known of all the glitching pulsars, with glitches occurring on average every three years. Glitches are currently not predictable.

On 12 December 2016, Vela was observed to glitch live for the first time with a radio telescope (the 26 m telescope at the Mount Pleasant Radio Observatory) large enough to see individual pulses. This observation showed that the pulsar nulled (i.e. did not pulse) for one pulse, with the pulse prior being very broad and the two following pulses featuring low linear polarization. It also appeared that the glitch process took under five seconds to occur.[6]

Research campaigns[edit]

The association of the Vela pulsar with the Vela Supernova Remnant, made by astronomers at the University of Sydney in 1968,[7] was direct observational proof that supernovae form neutron stars.

Studies conducted by Kellogg et al. with the Uhuru spacecraft in 1970–71 showed the Vela pulsar and Vela X to be separate but spatially related objects. The term Vela X was used to describe the entirety of the supernova remnant.[8] Weiler and Panagia established in 1980 that Vela X was actually a pulsar wind nebula, contained within the fainter supernova remnant and driven by energy released by the pulsar.[9]

Nomenclature[edit]

The pulsar is occasionally referred to as Vela X, but this phenomenon is separate from either the pulsar or the Vela X nebula. A radio survey of the Vela-Puppis region was made with the Mills Cross Telescope in 1956-57 and identified three strong radio sources: Vela X, Vela Y, and Vela Z. These sources are observationally close to the Puppis A supernova remnant, which is also a strong X-ray and radio source.[10]

Neither the pulsar nor either of the associated nebulae should be confused with Vela X-1, an observationally close but unrelated high-mass X-ray binary system.

In music[edit]

The emissions of Vela and the pulsar PSR B0329+54 were converted into audible sound by French composer Gérard Grisey and used in the piece Le noir de l'étoile (1989–90).[11][12][13]

Gallery[edit]

References[edit]

  1. ^ a b "NAME Vela Pulsar". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 9 January 2013.
  2. ^ Caraveo, P. A.; De Luca, A.; Mignani, R. P.; Bignami, G. F. (November 2001). "The Distance to the Vela Pulsar Gauged with Hubble Space Telescope Parallax Observations". Astrophys. J. 561 (2): 930–937. arXiv:astro-ph/0107282. Bibcode:2001ApJ...561..930C. doi:10.1086/323377.
  3. ^ Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M. (August 2005). "ATNF Pulsar Catalogue: J0835-4510". VizieR On-line Data Catalog. Bibcode:2005yCat.7245....0M.
  4. ^ Lyne, Andrew G.; Graham-Smith, Francis (1998). Pulsar Astronomy (2nd ed.). Cambridge University Press. ISBN 0-521-59413-8.
  5. ^ Mignani, R. P.; Zharikov, R. P.; Caraveo, P. A. (October 2007). "The Optical Spectrum of the Vela Pulsar". Astronomy and Astrophysics. 473 (3): 891–896. arXiv:0707.2036. Bibcode:2007A&A...473..891M. doi:10.1051/0004-6361:20077774.
  6. ^ Palfreyman, J.; Dickey, J. M.; Hotan, A.; Ellingsen, S.; van Straten, W. (April 2018). "Alteration of the magnetosphere of the Vela pulsar during a glitch". Nature. 556 (7700): 219–222. Bibcode:2018Natur.556..219P. doi:10.1038/s41586-018-0001-x. PMID 29643483.
  7. ^ Large, M. I.; Vaughan, A. E.; Mills, B. Y. (October 1968). "A Pulsar Supernova Association?". Nature. 20 (5165): 340–341. Bibcode:1968Natur.220..340L. doi:10.1038/220340a0.
  8. ^ Kellogg, E.; Tananbaum, H.; Harnden, F. R., Jr.; Gursky, H.; Giacconi, R.; Grindlay, J. (August 1973). "The X-ray Structure of the Vela X Region Observed from Uhuru". The Astrophysical Journal. 183: 935–940. Bibcode:1973ApJ...183..935K. doi:10.1086/152279.
  9. ^ Weiler, K. W.; Panagia, N. (October 1980). "Vela X and the Evolution of Plerions". Astronomy and Astrophysics. 90 (3): 269–282. Bibcode:1980A&A....90..269W.
  10. ^ Rishbeth, H. (December 1958). "Radio Emission from the Vela-Puppis Region". Australian Journal of Physics. 11 (4): 550–563. Bibcode:1958AuJPh..11..550R. doi:10.1071/PH580550.
  11. ^ Del Re, Giuseppe (2000). The Cosmic Dance: Science Discovers the Mysterious Harmony of the Universe. Philadelphia: Templeton Foundation. pp. 24–25. ISBN 978-1-890151-25-6.
  12. ^ Luminet, Jean-Pierre (2011). Illuminations: Cosmos et esthétique (in French). Paris: Odile Jacob. pp. 419–420. ISBN 978-2-7381-2562-0.
  13. ^ "Gérard Grisey (1946-1998): Le Noir de l'Étoile (1989-1990)" (in French). IRCAM. Retrieved 12 January 2016.

External links[edit]

Coordinates: Sky map 08h 35m 20.65525s, −45° 10′ 35.1545″