Venera 4

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Venera 4
Venera 4 (MMA 2011) (1).JPG
Venera-4 model
Mission type Venus lander
Operator Lavochkin
COSPAR ID 1967-058A
SATCAT no. 2840
Mission duration 127 days
Spacecraft properties
Spacecraft 1V (V-67) s/n 310[1]
Manufacturer Lavochkin
Launch mass 1,106 kg (2,438 lb)[2]
Dry mass 377 kg (831 lb)
Start of mission
Launch date 12 June 1967, 02:40 UTC[3][4]
Rocket Molniya 8K78M[3]
Launch site Baikonur 1/5
End of mission
Last contact 18 October 1967 (18 October 1967), 04:34 UT
Orbital parameters
Reference system Heliocentric
Perihelion 0.71 AU
Apohelion 1.02 AU
Inclination 4.3°
Period 293 days
Venus impact (failed landing)
Impact date 18 October 1967, 04:34 UT
Impact site 19°N 38°E / 19°N 38°E / 19; 38 (Eisila region)

The Soviet Union 1968 CPA 3623 stamp (Venera 4 Space probe).jpg

Venera 4 (Russian: Венера-4 meaning Venus 4), also designated 1V (V-67) s/n 310[1] was a probe in the Soviet Venera program for the exploration of Venus. It was the first successful probe to perform in-place analysis of the environment of another planet. It may also have been the first probe to land on another planet, with the fate of its predecessor Venera 3 being unclear.[5] Venera 4 provided the first chemical analysis of the Venusian atmosphere, showing it to be primarily carbon dioxide with a few percent of nitrogen and below one percent of oxygen and water vapors. The station detected a weak magnetic field and no radiation field. The outer atmospheric layer contained very little hydrogen and no atomic oxygen. The probe sent the first direct measurements proving that Venus was extremely hot, that its atmosphere was far denser than expected, and that it had lost most of its water long ago.


Capsule of Venera 4.

The main hub of Venera 4 stood 3.5 metres (11 ft) high, its solar panels spanned 4 metres (13 ft) and had an area of 2.5 square metres (27 sq ft). The hub included a 2 meter long magnetometer, an ion detector, a cosmic ray detector and an ultraviolet spectrometer capable of detecting hydrogen and oxygen gases. The devices were intended to operate until entry into the Venusian atmosphere. At that juncture, the station was designed to release the probe capsule and disintegrate. The rear part of the hub contained a liquid-fuel thruster capable of correcting the flight course. The flight program was planned to include two significant course corrections, for which purpose the station could receive and execute up to 127 different commands sent from the Earth.[6]

The front part of the hub contained a nearly spherical landing capsule 1 meter in diameter and weighing 383 kg. Compared to previous (failed) Venera probes, the capsule contained an improved heat shield which could withstand temperatures up to 11,000 °C (19,800 °F). Instead of the previous liquid-based cooling design, a simpler and more reliable gas system was installed.[2] The durability of the capsule was checked by exposing it to high temperatures, pressures and accelerations using three unique testing installations. The heat resistance was checked in a high-temperature vacuum system emulating the upper layers of the atmosphere.[7] The capsule was also pressurized up to 25 atmospheres. (The surface pressure on Venus was unknown at the time. Estimates ranged from a few to hundreds of atmospheres).[8] Finally, it was subjected to accelerations of up to 450 g in a centrifuge. The centrifuge test caused cracking of electronic components and cable brackets, which were all replaced shortly before launch. The timing for launch was rather tight, so as not to miss the "launch window" – the days of the year when the path to the destination planet from Earth is energetically least demanding.[citation needed]

The capsule could float in case of a water landing. Considering the possibility of such a landing, its designers made the lock of the capsule using sugar;[6][7][9] it was meant to dissolve in liquid water, releasing the transmitter antennas. The capsule contained a newly developed vibration-damping system and its parachute could resist temperatures up to 450 °C.[7]

The capsule contained an altimeter, thermal control, a parachute and equipment for making atmospheric measurements. The latter included a thermometer, barometer, hydrometer, altimeter and a set of gas analysis instruments. The data were sent by two transmitters at a frequency of 922 MHz and a rate of 1 bit/s; the measurements were sent every 48 seconds. The transmitters were activated by the parachute deployment as soon as the outside pressure reached 0.6 standard atmospheres (61 kPa), which was thought to occur at the altitude about 26 kilometres (16 mi) above the surface of the planet. The signals were received by several stations, including the Jodrell Bank Observatory.[2][6]

The capsule was equipped with a rechargeable battery with a capacity sufficient for 100 minutes of powering the measurement and transmitter systems. To avoid becoming discharged during the flight to Venus, the battery was kept charged using the solar panels of the hub. Before the launch, the entire Venera 4 station was sterilized to prevent possible biological contamination of Venus.[2]

The mission[edit]

Two nominally identical 4V-1 probes were launched in June 1967. The first probe, Venera 4, was launched on 12 June by a Molniya-M carrier rocket flying from the Baikonur Cosmodrome.[3] A course correction was performed on 29 July when it was 12 million km away from Earth; otherwise the probe would have missed Venus. Although two such corrections had been planned, the first one was accurate enough and therefore the second correction was canceled. On October 18, 1967, the spacecraft entered the Venusian atmosphere with an estimated landing place near 19°N 38°E / 19°N 38°E / 19; 38.[6] The second probe, Kosmos 167, was launched on 17 June but failed to depart low Earth orbit.[10]

During entry into the Venusian atmosphere, the heat shield temperature rose to 11,000 °C (19,800 °F) and at one point the cabin deceleration reached 300 G.[11] The descent lasted 93 minutes. The capsule deployed its parachute at an altitude of about 52 kilometres (32 mi), and started sending data on pressure, temperature and gas composition back to Earth. The temperature control kept the inside of the capsule at −8 °C (18 °F). The temperature at 52 km was recorded as 33 °C (91 °F), and the pressure as less than 1 standard atmosphere (100 kPa). At the end of the 26-km descent, the temperature reached 262 °C (504 °F) and pressure increased to 22 standard atmospheres (2,200 kPa), and the signal transmission terminated. The atmospheric composition was measured as 90–93% carbon dioxide, 0.4–0.8% oxygen, 7% nitrogen and 0.1–1.6% water vapor.[6]

Malfunction of the altimeter resulted in the value of initial altitude (deployment of the capsule's parachute and start of the measurements) being transmitted as 26 kilometres (16 mi). Therefore, some Earth observers interpreted the descent as having continued to the surface of Venus, which was quickly dismissed as inconsistent with other data. In particular, the pressure readings by the capsule were much too low for the Venusian surface.[2][7]


For the first time, in situ analysis of the atmosphere of another planet was performed and the data sent back to Earth; the analysis included chemical composition, temperature and pressure. The measured ratio of carbon dioxide to nitrogen of about 13 corrected the previous estimates so much (an inverse ratio was expected in some quarters) that some scientists contested the observations. The main station detected no radiation belts; relative to Earth, the measured magnetic field was 3000 times weaker, and the hydrogen corona was 1000 times less dense. No atomic oxygen was detected. All the data suggested that water, if present, had leaked from the planet long before. This conclusion was unexpected considering the thick Venusian clouds. Because of the negligible humidity, the sugar lock system, employed on Venera 4 in case of a water landing, was abandoned in subsequent Venus probes.[2][6]

The mission was considered a complete success, especially given several previous failures of Venera probes.[2] Although the Venera 4 design did allow for data transmission after landing, the Venera 3–6 probes were not built to withstand the pressures at the Venusian surface. The first successful landing on Venus was achieved by Venera 7 in 1970.

See also[edit]


  1. ^ a b Venera 1V (V-67). Encyclopedia Astronautica
  2. ^ a b c d e f g "Venera 4 (in Russian)". Retrieved 2009-07-07. 
  3. ^ a b c McDowell, Jonathan. "Launch Log". Jonathan's Space Page. Retrieved 11 April 2013. 
  4. ^ "Spacecraft - Details". National Space Science Data Center. Retrieved 2013-11-05. 
  5. ^ David Leverington (2000). New cosmic horizons. Cambridge University Press. pp. 74–74. ISBN 0-521-65833-0. 
  6. ^ a b c d e f Brian Harvey (2007). Russian planetary exploration. Springer. pp. 98–101. ISBN 0-387-46343-7. 
  7. ^ a b c d Paolo Ulivi, David Michael Harland (2007). Robotic Exploration of the Solar System: The golden age 1957–1982. Springer. pp. 55–56. ISBN 0-387-49326-3. 
  8. ^ V. M. Vakhnin (1968). "A Review of the Venera 4 Flight and Its Scientific Program". J. Atmos. Sci. 25: 533–534. Bibcode:1968JAtS...25..533V. doi:10.1175/1520-0469(1968)025<0533:AROTVF>2.0.CO;2. 
  9. ^ Photo of the lock., 18 February 2005.
  10. ^ "Cosmos 167". National Space Science Data Center. National Aeronautics and Space Administration. 
  11. ^ Paolo Ulivi, David Michael Harland (2007). Robotic Exploration of the Solar System: The golden age 1957–1982. Springer. p. 63. ISBN 0-387-49326-3.