Vertebral artery

From Wikipedia, the free encyclopedia
Vertebral artery
Vertebral artery.png
Arteries of the neck. The vertebral arteries arise from the subclavian arteries and join to form the basilar artery
SourceSubclavian artery
BranchesBasilar artery
Posterior spinal artery
Anterior spinal artery
Posterior inferior cerebellar artery
VeinVertebral vein
LatinArteria vertebralis
Anatomical terminology

The vertebral arteries are major arteries of the neck. Typically, the vertebral arteries originate from the subclavian arteries. Each vessel courses superiorly along each side of the neck, merging within the skull to form the single, midline basilar artery. As the supplying component of the vertebrobasilar vascular system, the vertebral arteries supply blood to the upper spinal cord, brainstem, cerebellum, and posterior part of brain.[1]


The vertebral arteries usually arise from the posterosuperior aspect of the central subclavian arteries on each side of the body,[2] then enter deep to the transverse process at the level of the 6th cervical vertebrae (C6),[1] or occasionally (in 7.5% of cases) at the level of C7. They then proceed superiorly, in the transverse foramen of each cervical vertebra.[1] Once they have passed through the transverse foramen of C1 (also known as the atlas), the vertebral arteries travel across the posterior arch of C1 and through the suboccipital triangle[citation needed] before entering the foramen magnum.[1]

Nunziante Ippolito, a Neapolitan physician, identified the "angle of Nunziante Ippolito" to find the vertebral artery, between the anterior scalene muscle and the longus colli muscle.[3]

Inside the skull, the two vertebral arteries join to form the basilar artery at the base of the pons. The basilar artery is the main blood supply to the brainstem and connects to the Circle of Willis to potentially supply the rest of the brain if there is compromise to one of the carotids. At each cervical level, the vertebral artery sends branches to the surrounding musculature via the anterior spinal arteries.


The vertebral artery may be divided into four parts:


Triangle of the vertebral artery is a region within the root of the neck and has following boundaries:[4]

The vertebral artery runs from base to apex (prior to entering the transverse foramen of 6th cervical vertebra).[citation needed]

The carotid tubercle separates the vertebral artery which passes directly behind it from the common carotid artery which lies directly in front of it. The ideal site for palpating the carotid pulse is to gently press the common carotid artery against the carotid tubercle.[5]


There is commonly variations in the course and size of the vertebral arteries. For example, differences in size between left and right vertebral arteries may range from a slight asymmetry to marked hypoplasia of one side, with studies estimating a prevalence of unilateral vertebral artery hypoplasia between 2% and 25%.[6] In 3-15% of the population, a bony bridge called the arcuate foramen covers the groove for the vertebral artery on vertebra C1. Rarely, the vertebral arteries enter the subarachnoid space at C1-C2 (3%) or C2-C3 (only three cases have been reported) vertebral levels instead of the atlanto-occipital level.[7]

The portion of vertebral arteries located within the skull (intracranial) have diameters of 3.17 mm. The intracranial length for the left vertebral artery (32.4 mm) is longer than the right (31.5 mm). The angle where vertebral arteries meet the basilar artery (vertebrobasilar junction), is 46 degrees.[8]


As the supplying component of the vertebrobasilar vascular system, the vertebral arteries supply blood to the upper spinal cord, brainstem, cerebellum, and posterior part of brain.[1]

Clinical significance[edit]

As the supplying component of the vertebrobasilar vascular system, the vertebral arteries supply blood to the upper spinal cord, brainstem, cerebellum, and posterior part of brain.[1] A stroke of the arteries may result in a posterior circulation stroke.[citation needed]

Chiropractic manipulation of the neck has the potential to cause a vertebral arterial dissection.[9][10][11]

Additional images[edit]


  1. ^ a b c d e f Standing S, Borely NR, Collins P, Crossman AR, Gatzoulis MA, Healy GC, et al. (2008). Gray's Anatomy: The Anatomical Basis of Clinical Practice (40th ed.). London: Churchill Livingstone. ISBN 978-0-8089-2371-8.
  2. ^ Yuan SM (February 2016). "Aberrant Origin of Vertebral Artery and its Clinical Implications". Brazilian Journal of Cardiovascular Surgery. 31 (1): 52–9. doi:10.5935/1678-9741.20150071. PMC 5062690. PMID 27074275.
  3. ^ "Ippolito, Nunziante". Trecanni.
  4. ^ Campero, A.; Rubino, P. A.; Rhoton, L. Jr. (2011). Pathology and surgery around the vertebral artery. Paris: Springer. p. 29. doi:10.1007/978-2-287-89787-0_4. ISBN 978-2-287-89787-0.
  5. ^ Tubbs RS, Salter EG, Wellons JC, Blount JP, Oakes WJ (April 2005). "The triangle of the vertebral artery". Neurosurgery. 56 (suppl. 4): 252–5. doi:10.1227/01.neu.0000156797.07395.15. PMID 15794821. S2CID 10515351.
  6. ^ Park JH, Kim JM, Roh JK (September 2007). "Hypoplastic vertebral artery: frequency and associations with ischaemic stroke territory". Journal of Neurology, Neurosurgery, and Psychiatry. 78 (9): 954–8. doi:10.1136/jnnp.2006.105767. PMC 2117863. PMID 17098838.
  7. ^ Moon, Jong Un; Kim, Myoung Soo (September 1, 2019). "C3 segmental vertebral artery diagnosed by computed tomography angiography". Surgical and Radiologic Anatomy. 41 (9): 1075–1078. doi:10.1007/s00276-019-02193-z. ISSN 1279-8517. PMID 30762086. S2CID 61807570.
  8. ^ Omotoso BR, Harrichandparsad R, Satyapal KS, Moodley IG, Lazarus L (June 2021). "Radiological anatomy of the intracranial vertebral artery in a select South African cohort of patients". Scientific Reports. 11 (1): 12138. Bibcode:2021NatSR..1112138O. doi:10.1038/s41598-021-91744-9. PMC 8190432. PMID 34108602.
  9. ^ Jones, Jeremy; Jones, Catherine; Nugent, Kenneth (January 5, 2015). "Vertebral artery dissection after a chiropractor neck manipulation". Proceedings (Baylor University. Medical Center). 28 (1): 88–90. doi:10.1080/08998280.2015.11929202. PMC 4264725. PMID 25552813.
  10. ^ "Stroke Risk Associated With Aggressive Chiropractic Neck Adjustments".
  11. ^

External links[edit]