Viable systems approach

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Viable systems approach (VSA) is a system theory in which the observed entities and their environment are interpreted through a systemic viewpoint, starting with the analysis of fundamental elements and finally considering more complex related systems (Ludwig von Bertalanffy, 1968). The assumption is that each entity/system is related to other systems, placed at higher level of observation, called supra-systems, whose traits can be detected in their own subsystems (principle of system hierarchy). As such, the fundamental unit of analysis is a system made up of many parts or structures (Parsons, 1971). In this sense, every entity (a firm, or simply an individual, a consumer, or a community) as a system can be considered a micro-environment, made up of a group of interlinked sub-components which aim towards a common goal (this is the condition, for the aggregate, to be qualified as a system). The Viable System Model was first proposed by Anthony Stafford Beer. In general terms, a viable system is finalized toward its vitality throughout viable behavior based upon consonant and resonant relationships (Barile, 2000; Golinelli, 2000, 2005, 2010; Barile, 2008, 2009).

Systems thinking[edit]

Systems thinking contributed in a significant manner to the creation of a new conception of phenomenological reality, as a synthesis of philosophical, sociological, mathematical, physical and biological approaches, influencing culture and its prevalent values founded on the axiomatic corpus of Cartesian thought, has set off a paradigm revolution, moving on from a reductionist-mechanistic approach to reality, and modifying the traditional investigation model. Having rapidly spread to all areas of study, the systems approach has become the result of reflection, theoretical contribution, and formalisation, creating an epistemological approach to research and to the study of a complex reality. The origins of system theory go back to the 1950s when a group of scholars from various scientific and social fields (von Bertalanffy in 1956, and others) developed an interdisciplinary theory based on the concept of systems. Their system’s viewpoint rejected the idea that certain phenomena could be fully understood exclusively through an analytical approach, especially when the investigated subject consisted of complex phenomenon characterized by significant interaction among its components, as with the firm. In such a case, full understanding could be achieved through a global vision of the subject in question -a systemic vision- by applying a research method of this organized complexity. Furthermore we can observe that system thinking comes from the shift in attention from the part to the whole, implying a perception of reality as an integrated and interacting unicuum of phenomena, where the individual properties of the single parts become indistinct, while the relationships between the parts themselves and the events they produce through their interaction, become more important (in other words we may say that “system elements are rationally connected”; Luhmann, 1990). Moreover, the systems approach does not coincide with the holistic approach and is not in opposition to the analytical-reductionist approach. Rather, it is an approach which, placing itself within a continuum with reductionism and holism at its extremities, is able to reconcile the two. From the analysis of the elementary components of a phenomenon, it is always possible to arrive at, and then explain, a phenomenon in its entirety (von Bertalanffy, 1968).

What is VSA?[edit]

The VSA is a scientific approach to business theory that has become increasingly prominent in Italian academic circles in the past decade which decade is that?. Based upon system theory, VSA focuses on the analysis of relationships among socio-economic entities in search of viable interacting conditions (Barile, 2000; Golinelli, 2000). According to VSA, every entity (a business or an individual) can be considered a system of many parts or structures (Parsons, 1971), made up of a group of interlinked sub-components, with the aim of realising a common goal. The Viable Systems Approach proposes a deep analysis of the Structure - Systems dichotomy when introducing that every system represents a recognisable entity emerging from a specific changing structure (set of individual elements with assigned roles, activities and tasks performing in compliance with rules and constraints). System origins then from its own structure, this kind of evolution derives from the dynamic activation of static existing basic relationships. A structure can be studied (what it is? How it is made?), a system should only be interpreted (how does it work? What logics does it follow?)”. This means that from the a static structure the dynamic interpretation of reality brings up the recognition of various possible systems dependant on the finalities and final goal; in the same way a human being is composed by many components assembled within a physical structure, but in the dynamic view man and women may be eating, sleeping, playing tennis or bridge, and all of these are different possible systems. Another important VSA proposal is represented in the following figure, derived from Beer first conceptualization of decision making area and operating structure. Basically the VSA advance upon Stafford Beer’s proposal is based upon the allocation of numerous managerial and operative decision within the operating structure area, limiting the real decision making to strategic and high level decisions involving every decision maker. So we may say that the operating area of every human being involves the decision of going to jog, and of course the fact that this includes the wearing of a sport outfit and of running shoes; on the other hand the decision about deepening University studies compared to starting a new venture or practicing within a business may be intended within the decision making area.


The Viable Systems Approach, moreover, introduces a Conceptual Matrix based upon an iterative process describing the process of conception and realization of a Viable System. It starts from an idea that needs to be more framed within a logical structure, more detailed through the definition of a physical structure. Once the physical structure is defined it can relate with external resources and systems, embracing them within an extended structure that, via its dynamics, can give birth to numerous specific structures and eventually end up to be a Viable System. This recursive process may represent the development of a business just as much as an industrial district.

VSA origins[edit]

Starting from this theoretical basis, the VSA has gathered several multidisciplinary contributions finalizing them to the observation of complex entities, and principally it has developed its theoretical mainstream around several key concept derived by other disciplines: from system thinking (open system aspects), from natural and ecological sciences (particularly interesting are the organic aspects of homeostasis and equifinality; Hannan and Freeman, 1977); from chemical and biological disciplines (deepening concepts such as autopoiesis; Maturana and Varela, 1975), from sociology and psychology (an enlightening theory was cognitivism; Clark, 1993), from information technology (specifically we refer to IT roots based on cybernetics studies; Beer, 1975). VSA enables an analysis to be made of the relationships that exist among an enterprise’s internal components, as well as an analysis of the relationships between enterprises and other systemic entities in its environmental context. According to VSA, an enterprise develops as an open system that is characterised by:

  • many components (both tangible and intangible);
  • interdependence and communication among these components;
  • activation of these relationships in order to pursue the system’s goal.

Key Concepts[edit]

The aim of this synthetic exposure was to provide some of the founding concepts of the VSA clear to the reader (Golinelli 2000, 2005, 2008, 2009; Golinelli et al., 2002; Barile 2000, 2006, 2008, 2009a):

  1. a viable system lives, its aim is to survive within a context which is populated by other (viable) systems;
  2. every context is subjectively perceived by a viable system’s top management (the decision-maker) from analyzing its environment (a macro-system in which the decision maker is immerged) distinguishing and identifying its relevant supra-systems (resources owners) in relation with its objective;
  3. context is the synthesis of a reticulum of viable systems, within which it is possible to distinguish a certain number of systems (relevant supra-systems), which are able to condition top management decisions;
  4. the system’s structural definition and the level of consonance between its evolved components (interacting supra and sub systems), define a given system’s grade of elaboration
  5. a viable system has the capability of dynamic adjusting (auto-regulation) its structure: hence we may refer consonance to the system’s attempt to correctly interpret contextual signals, and resonance to the concretization of the consequent competitive behavior in order to maintain stability (if the system satisfies external expectations and needs displayed by relevant supra-systems.

Fundamental concepts[edit]

FC1 Individuals, organisations, and social institutions are systems that consist of elements directed towards a specific goal. People, families, networks, enterprises, public and private organisations are complex entities, all of which can be understood as systems.
FC2 Every system (of level L) identifies several supra-systems, positioned at a higher level (L+1), and several sub-systems, located at a lower level (L-1). Every hierarchy of systems is determined by observation from a specific perspective. The designation of a ‘supra-system’ or a ‘sub-systems’ is thus subjective.
FC3 The interpretation of complex phenomena requires interdisciplinary approaches, and should synthesize both a reductionistic view (analysing elements and their relations) and an holistic view (capable of observing the whole). The contribution of relationships (static, structural) and interactions (dynamic, systemic) is fundamental to the observed phenomenon (reality).
FC4 Systems are open to connection with other systems for the exchange of resources. A system boundary is a changing concept within which all the activities and resources needed for the system’s evolutionary dynamic are included. Nothing happens in isolation. The exchange of information and service of open systems is fundamental within every system dynamic. Within systems boundaries not only property resources are valorized, but many available, thus accessible resources (even though these are owned by other systems.
FC5 Viable systems are autopoietic and self-organising; that is, they are capable of self-generating internal conditions, which through self-regulation, support the reach of equilibrated conditions, thus synthesising internal possibilities and external constraints. Every system is autopoietic, and is thus able to generate new internal conditions.

Every system is also self-organising as it continuously aligns internal and external complexity. These two characteristics are the basis for sustainable behaviour in the face of opportunities and threats.

FC6 Every organisation is constituted by components that have specific roles, activities, and objectives, which are undertaken within constraints, norms, and rules.

From structure emerges a system through the transformation of relations into dynamic interactions with sub-systems and supra-systems.

The passage from structure to system involves a passage from a static view to a dynamic view, and focus shifts from individual components and relations to an holistic view of the observed reality. From the same structure, many systems can emerge as a consequence of the various combinations of internal and external components designed to pursue various objectives.
FC7 Systems are consonant when there is a potential compatibility among the system’s components. Systems are resonant when there is effective harmonic interaction among components. Consonant relationships refer to the static view (structure) where you could just evaluate the chances of a positive and harmonic relation.

Resonant relations are referred to a dynamic view (systemic) where you could evaluate concrete and effective positive and harmonic interactions.

FC8 A system’s viability is determined by its capability, over time, to develop harmonic behavior in sub-systems and supra-systems through consonant and resonant relationships. Viability is related to the system’s competitiveness and to the systems co-creation capability.
FC9 Business dynamic and viability require continuous structural and systemic changes focused to the alignment of internal structural potentialities with external systemic demands. The evolutionary dynamics of viable systems demonstrate continuous alignment between internal potentials and external expectations.
FC10 Viable systems continuously align internal complexity with external complexity in order to better manage changes affecting its viable behaviour. Decision-makers within these cognitive processes are influenced by strong believes, his/her interpretational schemes, and information. Internal and external alignment is achievable through a cognitive alignment, a knowledge process that includes chaos, complexity, complication, and certainty (through processes of abduction, induction and deduction).
The 10 fundamental concepts (FCs) of VSA

VSA applications[edit]

See also[edit]


  • ASHBY, H.R. (1958), “General Systems Theory as a New Discipline”, in General Systems (Yearbook of the Society for the Advancement of General Systems Theory), vol.3, pp. 1–6.
  • BARILE, S., (2000), eds., Contributi sul pensiero sistemico, Arnia, Salerno.
  • BARILE, S., SAVIANO, M., PELS, J., POLESE, F., CARRUBBO, L. (2014) “The contribution of VSA and SDl. Perspectives to Strategic Thinking in Emerging Economies”, Managing Service Quality, Vol.24, n.6, pp.565-591.
  • BEER, S. (1972), Brain of the Firm, The Penguin Press, London.
  • CAPRA, F. (1997), The Web of Life, Flamingo, London.
  • CLARK, A. (1993), Associative Engines, MIT Press, Boston.
  • GOLINELLI, G.M. (2010), Viable Systems Approach – Governing Business Dynamics, Kluwer/CEDAM, Padova.
  • LUHMANN, N. (1990), Soziale Sisteme – Grundriß einer Allgemeinen Theorie, Suhrkamp Verlag, Frankfurt.
  • MATURNANA, H.R. and VARELA, F.J. (1975), Autopoietic Systems, BLC Report 9, University of Illinois.
  • PARSONS, T. (1971), The System of Modern Societies, Prentice-Hall, Englewood Cliffs.
  • VON BERTALANFFY, L. (1968), General System Theory – Foundations, Development, Applications, George Braziller, New York.
  • WIENER, N., Cybernetics, MIT Press, 1948.

Further reading[edit]

  • BARABÁSI, A.L. (2002), Linked – The New Science of Networks, Perseus, Cambridge.
  • BARILE, S. (2008), L’impresa come Sistema – Contributi sull’Approccio Sistemico Vitale, II ed., Giappichelli, Torino.
  • BARILE, S. (2009a), Management Sistemico Vitale, Giappichelli, Torino.
  • BARILE, S. (2009b), “The dynamic of Information Varieties in the Processes of Decision Making”, Proceeding of the 13th WMSCI - World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, July.
  • BARILE, S., PELS, J., POLESE, F., SAVIANO, M. (2012), “An Introduction to the Viable Systems Approach and its Contribution to Marketing” in Journal of Business Market Management, Vol.5, No.2, pp.54-78,
  • BARILE, S. (Ed.) (2013), Contributions to theoretical and practical advances in management. A Viable Systems Approach (VSA), Vol. II, Roma, ARACNE.
  • BARILE, S. and POLESE, F. (2010), “Linking Viable Systems Approach and Many-to-Many Network Approach to Service-Dominant Logic and Service Science”, in International Journal of Quality and Service Science, vol.2, n.1, pp. 23–42.
  • BARILE, S. and SAVIANO, M. (2011), “Foundations of systems thinking: the structure-system paradigm", in VARIOUS AUTHORS, Contributions to theoretical and practical advances in management. A Viable Systems Approach (VSA). ASVSA, Associazione per la Ricerca sui Sistemi Vitali, International Printing Srl, Avellino, pp. 1–26.
  • BARILE, S., PELS, J., POLESE, F., SAVIANO, M. (2012), “An Introduction to the Viable Systems Approach and its Contribution to Marketing”, in Journal of Business, Market, Management, vol.5, n.2,pp. 54–78.
  • BEER, S. (1975), “Preface”, in H.R., MATURNANA and F.J. VARELA, Autopoietic Systems, BLC Report 9, University of Illinois.
  • CAPRA, F. (2002), The Hidden Connections, HarperCollins, London.
  • CHRISTOPHER, W.F. (2007), Holistic Management – Managing What Matters for Company Success, Wiley-Interscience. Hoboken.
  • GOLINELLI, G., PASTORE, A., GATTI, M., MASSARONI, E. and VAGNANI, G. (2002), “The Firm as a Viable System – Managing Inter-Organisational Relationships”, in Sinergie, n.58, pp. 65–98.
  • GOLINELLI, G.M. (2000), L’approccio Sistemico al Governo dell’Impresa – L’Impresa Sistema Vitale, I ed., CEDAM, Padova.
  • GOLINELLI, G.M. (2001), “Firm as a Viable System”, in Symphonya. Emerging Issues in Management (, n. 2., pp.
  • GOLINELLI, G.M. (2005), L’approccio Sistemico al Governo dell’Impresa. – L’Impresa Sistema Vitale, II ed., CEDAM, Padova.
  • GOLINELLI, G.M. (2008), L’approccio Sistemico al Governo dell’Impresa – Verso la Scientificazione dell’Azione di Governo, vol.II, II ed., CEDAM, Padova.
  • GOLINELLI, G.M. (2010), Viable Systems Approach (VSA), Governing Business Dynamics, Kluwer Cedam, Padova.
  • GOLINELLI, G.M., GATTI, M., VAGNANI, G. and GATTI, C. (2001), “Managing The Firm as a Viable System”, Euram (European Academy of Management) Proceedings: European Management Research – Trends and Challenges, IESE, Barcelona, April 20–21.
  • GUMMESSON, E. (2008), Total Relationship Marketing, Butterworth-Heinemann, Oxford.
  • GUMMESSON, E., MELE, C. and POLESE, F. (2009), “Service Science, S-D logic and Network Theory – Integrating the Perspectives for a New Research Agenda”, in E., GUMMESSON, C., MELE and F., POLESE, Service Science, S-D Logic and Network Theory, Giappichelli, Napoli, pp. 1–6.
  • HANNAN, M.T. and FREEMAN, J. (1977), “The Population Ecology of Organizations”, American Journal of Sociology, vol.82, n.5, pp. 929–964.
  • SPOHRER, J., ANDERSON, L., PASS, N. and AGER, T. (2008), “Service Science and Service Dominant Logic”, Otago Forum 2, pp. 4–18.
  • SPOHRER, J., MAGLIO, P.P., BAILEY, J. and GRUHL, D. (2007), “Steps Toward a Science of Service Systems”, Computer, pp. 71–77.
  • VARGO, S.L. and LUSCH, R. (2008), “Service-Dominant Logic – Continuing the Evolution”, Journal of the Academy of Marketing Science, vol.36, pp. 1–10.
  • VARGO, S.L. and LUSCH, R.F. (2004), “Evolving to a New Dominant Logic for Marketing”, Journal of Marketing, vol.68, pp. 1–17.
  • VON BERTALANFFY, L. (1956), “General System Theory”, in F.E., EMERY (eds.), General System, (Yearbook of the Society for the Advancement of General System Theory).
  • VON BERTALANFFY, L. (1962), Modern Theories of Development, Harper, New York.
  • WEICK, K. E. (1995), Sensemaking in Organizations. Sage, Thousand Oaks.