Water bottle

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Multi-use HDPE water bottles
Water Dispenser with large plastic bottles (demijohn or carboy)

A water bottle is a container that is used to hold water, liquids or other beverages for consumption. The use of a water bottle allows an individual to drink and transport a beverage from one place to another.

A water bottle is usually made of plastic, glass, or metal. Water bottles are available in different shapes, colors, and sizes. In the past, water bottles were sometimes made of wood, bark, or animal skins such as leather, hide and sheepskin. Water bottles can be either disposable or reusable. Reusable water bottles can also be used for liquids such as juice, iced tea, alcoholic beverages, or soft drinks. Reusable water bottles reduce plastic waste and contribute to saving the environment. Easily portable, water bottles make for convenient use. Water bottles often list nutrition facts.

Types[edit]

Single-use plastic[edit]

A one gallon PETE water bottle with attached package handle

Sales of single-use, pre-filled plastic water bottles have increased almost every single year for more than a decade. In 2011, greater than US$11 billion was spent on bottled water products in the United States alone.[1] In 2017, The US spent $11.5 billion on bottled waters.[citation needed] The International Bottled Water Association (IBWA) states that people are increasingly relying on water bottles for convenience and portability.

In some countries with low-quality tap water, citizens also use bottled water (including in family-size containers kept in the home) for health reasons. For example, as of 2010, Mexico had an average 8 percent increase per year in bottled water purchases, and consumed approximately 13 percent of the world's total of bottled water.[2] Mexican citizens drink more bottled water than those of any other country do, an average of 61.8 gallons per person each year – more than twice the rate of US per capita consumption.[2] The increase in the use of single-use personal plastic water bottles has contributed markedly to the country's litter problem, though the increase in the popularity of bottled water has come with a decrease in the growth rate of consumption of soft drinks[2] (which pose health risks in excessive quantities, as well as the same littering problem).

Reusable plastic[edit]

Multi-use water bottles can be made from high-density polyethylene (HDPE), low-density polyethylene (LDPE), copolyester, or polypropylene. All offer the advantage of being durable, lightweight, dishwasher-safe, and BPA-free. The main difference between each type of water bottle is the flexibility of the material. Copolyester and polypropylene offer the greatest rigidity; HDPE retains some flexibility; LDPE (most commonly associated with collapsible, squeeze bottles) is highly flexible.

Metal[edit]

Metal water bottles

Metal water bottles are growing in popularity. Made primarily from stainless steel or aluminium (aluminum), they are durable, retain less odor and taste from previous contents than most plastic bottles, but can sometime impart a metallic taste. Metal bottles thus often contain a resin or epoxy liner to protect contents from taste and odor transfer or corrosion.[3] Although most liners are now BPA-free, older and less expensive models can contain BPA. Glass liners may also be used (see next subsection).

It is not recommended to fill aluminium bottles with acidic liquids (e.g. orange juice), as this could cause aluminium to leach into the contents of the bottle.[4] Depending on the type of source material and manufacturing process behind a stainless steel bottle, trace amounts of minerals can leach into contents from this type of bottle as well.[5] Stainless steel bottles that do not contain a liner have been known to transfer a rusty taste and odor to contents. Bottles made with food-grade stainless steel (grade 304, also known as 18/8) do not transfer taste or odor.

Metal (especially steel) water bottles can be heavier than their plastic counterparts. Single-walled metal bottles readily transfer temperature of contents to external surfaces, which makes them unsuitable for use with unusually hot or cold liquids. Double-walled metal bottles are insulated to keep cold liquids cold and hot liquids hot, without the external surface being too hot or too cold. Because double-walled bottles have more metal in them, they are more expensive. They are typically vacuum-insulated, but some may have a solid or gel insulation between the metal walls.

Glass[edit]

Glass water bottle with protective silicone sleeve

Glass flasks have been used since ancient times, though were not common until the Early Modern period when consistent, bulk manufacturing of glass products became easier. Because they are completely recyclable, are BPA-free, and do not retain and transfer taste or odor, glass water bottles are becoming a popular choice again for many consumers concerned about their health.

Glass bottles are heavier than plastic, stainless steel, or aluminium, and are easier to damage or completely break. Like metal, they also have a high level of temperature transfer, so they are not ideal for very hot or cold liquids.[6] Some types of vacuum-insulated flasks use an inner layer of glass (which is easy to clean), and an outer layer of metal or plastic which helps shield the glass from breakage. Such bottles may still break if dropped, and thus some brands are triple-layer, with the glass inside two layers of plastic; this is a common configuration for large flasks intended for coffee or other liquids that need to be insulated.

Filtering[edit]

Carbon filtering water bottle.

This type of bottle is often BPA-Free and more commonly uses carbon (activated charcoal) filtration. UV light can also be used to purify water. UV filtration bottles are popular and convenient for those who are traveling to areas where water quality may be harmful, or where bottled water is not readily available. UV is effective against all water-borne pathogens.[7]

Carbon filtration bottles will eliminate some organic chemicals and improve the taste and odor of water. Carbon filtration will not eliminate pathogens, metals or nitrates from water.[8] Carbon filters must be changed regularly to maintain effectiveness.

Wirelessly connected[edit]

Connected devices collect data related to a person's water intake. The data is transmitted to a smartphone, which enables tracking of an individual's water intake and alerts the user when they are not properly hydrated. These devices are a result of recent technology advancements which fall in the broader category of the Internet of Things. Devices that monitor and collect data related to one's personal health are also part of the quantified self movement. While several concepts have been introduced, none are currently available commercially.

Hydration reservoirs[edit]

Hydration reservoir

Hydration reservoirs, also known as hydration bladders, are large-volume, flexible bags typically carried in a backpack system. Users access water via a sipping tube. This system allows the user to remain engaged in activity without having to stop and unscrew a water bottle.[9] Such reservoirs also permit the carrying of a larger water supply (thus a longer hike), as they have both more capacity and better integration into the carrying equipment than an external water bottle or canteen attached to the pack or belt.

Popularity[edit]

Due to growing concern over the environmental impact and cost of disposable plastic water bottles, more people are choosing to fill multi-use water bottles. However, the popularity and availability of disposable plastic water bottles continues to rise. In 2007, Americans consumed 50 billion single-serve bottles of water. Since 2001, the sale of single-serve bottled water has fluctuated by 70 percent, and this trend is continuing.[10] In 2016, a trend among Americans called "water bottle flipping" attracted media attention. This trend has since died out and other trends are taking its place.[11]

Consequences[edit]

Health[edit]

Chemicals used for making some types of bottles have been shown to be detrimental to the health of humans. Inhalation of chemicals used in the manufacture of plastics is a hazard for the factory workers who handle the material. In many developing countries, plastic waste is burned rather than recycled or deposited in landfills. Rural residents of developing countries who burn plastic as a disposal method are not protected from the chemical inhalation hazards associated with this practice. Inhalation of the pollutants produced from burning plastics have been shown to result in poor health outcomes.[12] It is important to dispose of water that has been stored in PET bottles beyond the expiration date because harmful chemicals may leach from the plastic.[13]

Bottle manufacturing relies on fossil fuels and natural resources. Some manufacturing processes release toxic chemicals into the air and water supply that can adversely affect nervous systems, blood, kidneys, immune systems, and can cause cancer and birth defects.[13] Most disposable water bottles are made from petroleum derived polyethylene terephthalate (PET). While PET is considered less toxic than many other types of plastic, the Berkeley Ecology Center found that manufacturing PET generates toxic emissions in the form of nickel, ethylbenzene, ethylene oxide and benzene at levels 100 times higher than those created to make the same amount of glass.[14]

Environment[edit]

Label on disposable water bottle highlighting positive environmental attributes.

Water bottles made of glass, aluminium and steel are the most readily recyclable. HDPE and LDPE bottles can be recycled as well.

Because the manufacturing and transportation of disposable water bottles requires petroleum, a non-renewable resource, the single-serve bottled water industry has come under pressure from concerned consumers. The Pacific Institute calculates that it required about 17 million barrels of oil to make the disposable plastic bottles for single-serve water that Americans consumed in 2006. To sustain the consumptive use of products relying on plastic components and level of manufactured demand for plastic water bottles,[15] the end result is shortages of fossil fuels. Furthermore, it means not only a shortage of the raw materials to make plastics, but also a shortage of the energy required to fuel their production.[16]

In recent years, the single-serve bottled water industry has responded to consumer concern about the environmental impact of disposable water bottles by significantly reducing the amount of plastic used in bottles.[17] The reduced plastic content also results in a lower weight product that uses less energy to transport. Other bottle manufacturing companies are experimenting with alternative materials such as corn starch to make new bottles that are more readily biodegradable.

The lowest impact water bottles are those made of glass or metal. They are not made from petroleum and are easily recyclable. By choosing to continuously fill any multi-use water bottle, the consumer keeps disposable bottles out of the waste stream and minimizes environmental impact.

See also[edit]


References[edit]

  1. ^ "Statistics | IBWA | Bottled Water". www.bottledwater.org.
  2. ^ a b c Johnson, Tim (May 27, 2010). "In Mexico, fear of tap water fuels bottled-water boom". McClatchy DC. Retrieved December 8, 2010.
  3. ^ Cooper, James E. (2011). "Assessment of bisphenol A released from reusable plastic, aluminum and stainless steel water bottles". Chemosphere. 85 (4): 943–947. Bibcode:2011Chmsp..85..943C. doi:10.1016/j.chemosphere.2011.06.060. PMC 3210908. PMID 21741673.
  4. ^ Veríssimo, Marta I.S. (2006). "Leaching of aluminum from cooking pans and food containers". Sensors and Actuators. B, Chemical. 118 (1–2): 192–197. doi:10.1016/j.snb.2006.04.061.
  5. ^ Krachler, Michael (2009). "Trace and ultratrace metals in bottled waters: survey of sources worldwide and comparison with refillable metal bottles". The Science of the Total Environment. 407 (3): 1089–96. Bibcode:2009ScTEn.407.1089K. doi:10.1016/j.scitotenv.2008.10.014. PMID 18990431.
  6. ^ "Glass Water Bottles: BPA Free Water Bottles". Retrieved March 30, 2012.
  7. ^ Hijnen, W.A.M. (2006). "Inactivation credit of UV radiation for viruses, bacteria and protozoan oocysts in water: A review". Water Research. 40 (1): 3–22. doi:10.1016/j.watres.2005.10.030. PMID 16386286.
  8. ^ "Tap water, bottled water, filtered water, which to choose" (PDF). Retrieved March 29, 2012.
  9. ^ George, Steve (June 30, 1997). "Bottle or bladder?". Backpacker. Vol. 25 no. 5. p. 58.
  10. ^ "Confronting Challenges: Bottled Water" (PDF). Retrieved 2016-05-29.
  11. ^ Arnett, Dugan; Rao, Sonia (2016-09-30). "Bottle flipping becomes the rage with middle schoolers". BostonGlobe.com. Retrieved 2016-10-09.
  12. ^ "Viral Warning: Don't Drink Bottled Water Left in Car".
  13. ^ a b Halden, Rolf U. (2010). "Plastics and Health Risks". Annual Review of Public Health. 31: 179–94. doi:10.1146/annurev.publhealth.012809.103714. PMID 20070188.
  14. ^ Howard, Brian (2003). "Message in a Bottle". E: The Environmental Magazine. 14 (5): 26.
  15. ^ "The Water Project". Retrieved 2016-05-29.
  16. ^ Cormier, Zoe. Plastic Unfantastic. This Magazine, Mar–Apr. 2008 18+. General OneFile. Accessed, Feb 24, 2012.
  17. ^ Carl Bialik (December 14, 2007). "Water Bottles Slim Down". The Wall Street Journal. Retrieved April 20, 2012.

External links[edit]