# Wikipedia:Requested articles/Mathematics

 Add your request in the most appropriate place below. Before adding a request please: Search for existing articles on the same subject. If an article exists, but not at the title you expected, you can create a redirect. Check spelling and capitalization. Be sure the subject meets Wikipedia's inclusion criteria. By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Also, when adding a request, please include as much information as possible (such as webpages, articles, or other reference material) so editors can find and distinguish your request from an already-created article.

## Algorithms

• Wolf and Pate correlation (capillary tubes)
• L-PLS (extends Partial Least Squares regression to 3 connected data blocks)
• OPLS (Orthogonal projections to latent structures) (currently link does not go to the right article)
• OPLS-DA (Orthogonal Projections to Latent Structures - Discriminant Analysis) (Partial Least Squares with discrete variables)

## Differential equations

Please make a page on linearization of ordinary differential equations. More precisely, consider the system x dot = f(x,u,t) wherex and u are vectors. Then it is a standard result used in the theroy of control systems (in engineering disciplinnes) that it can be linearized as x dot = Ax + Bu where A = partial f / partial x and B = partial / partial u. However, in the engineeiring books or web resources no proof is offered for it. Many textbooks cite the following book [*] as a reference for its proof, but unfortunately I do not have access to it. In the engineering dield many researchers will benefir from its proof.

[*] H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis, volume 13 of De Gruyter Studies in Mathematics. De Gruyter, Berlin - New York, 1990. —  Preceding unsigned comment added by 151.238.150.222 (talkcontribs) 20:12, 11 October 2015‎

This is a simple application of the concept of a Total derivative. Whether there is justification for having a whole article on the specific application you have in mind I am not sure. The editor who uses the pseudonym "JamesBWatson" (talk) 14:59, 13 October 2015 (UTC)

## Mathematical logic

Requests for articles about mathematical logic are on a separate page, and should be added there.

## Mathematicians

Prior to creating an article, any biographical details can be added to: Wikipedia:WikiProject Mathematics/missing mathematicians.

## Number theory

• 32760_(number) -- lowest number evenly divisible by all integers from 1 to 16; factorisation 2 * 2 * 2 * 3 * 3 * 5 * 7 * 13. [Comment: 32760 is not divisible by 16 or 11. The correct lowest number divisible by 1 through 16 is 720720.]
• 7920 (number) -- see http://www.numbergossip.com/7920 -- as far as I can see, the only unique thing about this number is that it's the order of the smallest sporadic simple group

## Topology

### Knot theory

• Chayes–McKellar–Winn theorem -
• knotscape software for knot theory
• Lamp cord trick, in topology and specifically knot theory, an observation that two certain spaces are homeomorphic, even if one of the components is knotted. The spaces are ${\displaystyle M^{3}\backslash T_{i},i=1,2}$, where ${\displaystyle M^{3}}$ is a hollow ball homeomorphic to ${\displaystyle S^{2}\times [0,1]}$ and ${\displaystyle T_{i}}$ a tube connecting the boundary components of ${\displaystyle M^{3}}$. The name comes from R. H. Bing's book "The Geometric Topology of 3-manifolds".
• Kashaev invariant, a kind of quantum invariant
• Millett unknot, a 2D representation of the unknot
• Singular braid monoid

## Uncategorized

Please try to classify these requests.

## References

1. ^ Jacobson, Nathan (1968). Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications. 39. American Mathematical Society. p. 287. ISBN 0-8218-7472-1.
2. ^ J. Alexander and A. Hirschowitz (1995). "Polynomial interpolation in several variables". Journal of Algebraic Geometry. 1. pp. 201–222.
3. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 254. ISBN 3-540-21902-1. Zbl 1159.11039.
4. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. 78. Providence, RI: American Mathematical Society. p. 27. ISBN 0-8218-0730-7. Zbl 0714.16001.
5. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. ISBN 0-226-42451-0. Zbl 1001.16500.
6. ^ Garibaldi, Skip; Petersson, Holger P. (2011). "Wild Pfister forms over Henselian fields, K-theory, and conic division algebras". J. Algebra. 327: 386–465. Zbl 1222.17009.
7. ^ Loos, Ottmar (2011). "Algebras with scalar involution revisited". J. Pure Appl. Algebra. 215: 2805–2828. Zbl 1229.14002.
8. ^ Baur, Karin; King, Alastair; Marsh, Robert J. "Dimer models and cluster categories of Grassmannians". arXiv:1309.6524 [math.RT].
9. ^ Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998). The book of involutions. Colloquium Publications. 44. With a preface by J. Tits. Providence, RI: American Mathematical Society. p. 128. ISBN 0-8218-0904-0. Zbl 0955.16001.
10. ^ Reiner, I. (2003). Maximal Orders. London Mathematical Society Monographs. New Series. 28. Oxford University Press. pp. 294–298. ISBN 0-19-852673-3. Zbl 1024.16008.
11. ^ Rosenfeld, Boris (1997). Geometry of Lie groups. Mathematics and its Applications. 393. Dordrecht: Kluwer Academic Publishers. p. 91. ISBN 0792343905. Zbl 0867.53002.
12. ^ a b c Caenepeel, Stefaan (1998). Brauer groups, Hopf algebras and Galois theory. Monographs in Mathematics. 4. Dordrecht: Kluwer Academic Publishers. p. 184. ISBN 1-4020-0346-3. Zbl 0898.16001.
13. ^ McCrimmon, Kevin (1977). "Axioms for inversion in Jordan algebras". J. Algebra. 47: 201–222. Zbl 0421.17013.
14. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. 136. American Mathematical Society. p. 8. ISBN 978-0-8218-1836-7. Zbl 0348.17009.
15. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. 78. Providence, RI: American Mathematical Society. p. 51. ISBN 0-8218-0730-7. Zbl 0714.16001.
16. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. 136. American Mathematical Society. p. 2. ISBN 978-0-8218-1836-7. Zbl 0348.17009.
17. ^ Schinzel, Andrzej (2000). Polynomials with special regard to reducibility. Encyclopedia of Mathematics and Its Applications. 77. Cambridge: Cambridge University Press. ISBN 0-521-66225-7. Zbl 0956.12001.
18. ^ Choie, Y.; Diamantis, N. (2006). "Rankin–Cohen brackets on higher-order modular forms". In Friedberg, Solomon (ed.). Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005. Proc. Symp. Pure Math. 75. Providence, RI: American Mathematical Society. pp. 193–201. ISBN 0-8218-3963-2. Zbl 1207.11052.
19. ^ http://arxiv.org/abs/alg-geom/9606004
20. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. 82. Providence, RI: American Mathematical Society. p. 164. ISBN 978-0-8218-0738-5. Zbl 0793.16029.
21. ^ Willerton, Simon (2013-02-18). "Tight spans, Isbell completions and semi-tropical modules". arXiv:1302.4370.
22. ^ Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. pp. 88–89. ISBN 978-3-540-44085-7. Zbl 1007.03002.
23. ^ Sikorski, Roman (1964). Boolean algebras (2nd ed.). Berlin-Göttingen-Heidelberg-New York: Springer-Verlag. MR 0177920. Zbl 0123.01303.
24. ^ Chabert, Jean-Luc (1979). "Anneaux de Skolem". Arch. Math. (in French). 32: 555–568. Zbl 0403.13008.
25. ^ Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs. 2. American Mathematical Society. p. 41. ISBN 0-8218-7178-1.
Taylor, Martin (1984). Classgroups of group rings. LMS Lecture Notes. 91. Cambridge University Press. p. 26. ISBN 0-521-27870-8.
26. ^ Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. 137. Cambridge: Cambridge University Press. p. 53. ISBN 978-0-521-19022-0. Zbl 1250.68007.
27. ^ Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 37. ISBN 3-540-51250-0. Zbl 0717.11045.
28. ^ Gabber, Ofer; Ramero, Lorenzo (2003). Almost ring theory. Lecture Notes in Mathematics. 1800. Berlin: Springer-Verlag. doi:10.1007/b10047. ISBN 3-540-40594-1. MR 2004652.
Notes by Torsten Wedhorn
29. ^ Bhargava, Manjul; Ho, Wei (2013). "Coregular spaces and genus one curves". arXiv:1306.4424v1 [math.AG].
30. ^ Khovanskiǐ, A.G. (1991). Fewnomials. Translations of Mathematical Monographs. 88. Translated from the Russian by Smilka Zdravkovska. Providence, RI: American Mathematical Society. ISBN 0-8218-4547-0. Zbl 0728.12002.
31. ^ a b Marcolli, Matilde (2010). Feynman motives. World Scientific. ISBN 978-981-4304-48-1. Zbl 1192.14001.
32. ^ Soulé, C.; Abramovich, Dan; Burnol, J.-F.; Kramer, Jürg (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. 33. Joint work with H. Gillet. Cambridge: Cambridge University Press. p. 36. ISBN 0-521-47709-3. Zbl 0812.14015.
33. ^ Timashev, Dmitry A. (2011). Invariant Theory and Algebraic Transformation Groups 8. Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences. 138. Berlin: Springer-Verlag. ISBN 978-3-642-18398-0. Zbl 1237.14057.
34. ^ Knutson, Allen; Lam, Thomas; Speyer, David (15 Nov 2011). "Positroid Varieties: Juggling and Geometry". arXiv:1111.3660 [math.AG].
35. ^ J.-Y. Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195-234. Zbl 1082.14052
36. ^ Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii (2007). Tropical algebraic geometry. Oberwolfach Seminars. 35. Basel: Birkhäuser. pp. 86–87. ISBN 978-3-7643-8309-1. Zbl 1162.14300.
37. ^ Consani, Caterina; Connes, Alain, eds. (2011). Noncommutative geometry, arithmetic, and related topics. Proceedings of the 21st meeting of the Japan-U.S. Mathematics Institute (JAMI) held at Johns Hopkins University, Baltimore, MD, USA, March 23–26, 2009. Baltimore, MD: Johns Hopkins University Press. ISBN 1-4214-0352-8. Zbl 1245.00040.
38. ^ Machiel van Frankenhuijsen (2014). The Riemann Hypothesis for function fields. LMS Student Texts. 80. Cambridge University Press. ISBN 978-1-107-68531-4.
39. ^ Bartolome, Boris (2014). "The Skolem-Abouzaid theorem in the singular case". arXiv:1406.3233 [math.NT].
40. ^ Nisse, Mounir (2011). "Complex tropical localization, and coamoebas of complex algebraic hypersurfaces". In Gurvits, Leonid (ed.). Randomization, relaxation, and complexity in polynomial equation solving. Banff International Research Station workshop on randomization, relaxation, and complexity, Banff, Ontario, Canada, February 28–March 5, 2010. Contemporary Mathematics. 556. Providence, RI: American Mathematical Society. pp. 127–144. ISBN 978-0-8218-5228-6. Zbl 1235.14058.
41. ^ Ballico, E. (2011). "Scroll codes over curves of higher genus: Reducible and superstable vector bundles". Designs, Codes and Cryptography. 63 (3): 365. doi:10.1007/s10623-011-9561-6.
42. ^ Sanyal, Raman; Sturmfels, Bernd; Vinzant, Cynthia (2013). "The entropic discriminant". Adv. Math. 244: 678–707. Zbl 1284.15006.
43. ^ Björner, Anders; Ziegler, Günter M. (1992). "8. Introduction to greedoids". In White, Neil (ed.). Matroid Applications. Matroid applications. Encyclopedia of Mathematics and its Applications. 40. Cambridge: Cambridge University Press. pp. 284–357. doi:10.1017/CBO9780511662041.009. ISBN 0-521-38165-7. MR 1165537. Zbl 0772.05026.
44. ^ Park, Seong Ill; Park, So Ryoung; Song, Iickho; Suehiro, Naoki (2000). "Multiple-access interference reduction for QS-CDMA systems with a novel class of polyphase sequences". IEEE Trans. Inf. Theory. 46 (4): 1448–1458. Zbl 1006.94500.
45. ^ Ardila, Federico; Rincón, Felipe; Williams, Lauren (15 Sep 2013). "Positroids and non-crossing partitions". arXiv:1308.2698 [math.CO].
46. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005.
47. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005.
48. ^ *Fokas, A S (1997). "A unified transform method for solving linear and certain nonlinear PDEs". Proceedings of the Royal Society. A (Mathematical, Physical, and Engineering Sciences). 453. Royal Society. pp. 1411–1443.
49. ^
50. ^ *Soulé, C. (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. 33. with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge University Press. ISBN 0-521-41669-8. MR 1208731. Zbl 0812.14015.
51. ^ Mirzakhani, Maryam (2008). Ergodic theory of the earthquake flow. Int. Math. Res. Not. 2008. doi:10.1093/imrn/rnm116. Zbl 1189.30087.
52. ^ Christian Bonatti; Lorenzo J. Díaz; Marcelo Viana (30 March 2006), Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Springer Science & Business Media, p. 9, ISBN 978-3-540-26844-4
53. ^ Baake, Michael; Moody, Robert V., eds. (2000). Directions in mathematical quasicrystals. CRM Monograph Series. 13. Providence, RI: American Mathematical Society. p. 237. ISBN 0-8218-2629-8. Zbl 0955.00025.
54. ^ Walters, Peter (2000). An Introduction to Ergodic Theory. Graduate Texts in Mathematics. 79. Springer-Verlag. p. 207. ISBN 0-387-95152-0. ISSN 0072-5285.
55. ^ a b Azizov, T.Ya.; Iokhvidov, E.I.; Iokhvidov, I.S. (1983). "On the connection between the Cayley-Neumann and Potapov-Ginzburg transformations". Funkts. Anal. (in Russian). 20: 3–8. Zbl 0567.47031.
56. ^ e.g. Cwikel et al., On the fundamental lemma of interpolation theory, J. Approx. Theory 60 (1990) 70–82
57. ^ Jacobson, Nathan (1996). Finite-dimensional division algebras over fields. Berlin: Springer-Verlag. ISBN 3-540-57029-2. Zbl 0874.16002.
58. ^ a b Whaples, G. (1957). "Galois cohomology of additive polynomial and n-th power mappings of fields". Duke Math. J. 24: 143–150. doi:10.1215/S0012-7094-57-02420-1. Zbl 0081.26702.
59. ^ McCarthy, Paul J. (1991). Algebraic extensions of fields (Corrected reprint of the 2nd ed.). New York: Dover Publications. p. 132. Zbl 0768.12001.
60. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 11 (3rd ed.). Springer-Verlag. p. 562. ISBN 978-3-540-77269-9. Zbl 1145.12001.
61. ^ Zinovy Reichstein. "Joubert's theorem fails in characteristic 2". arXiv:1406.7529 [math.NT].
62. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 11 (3rd ed.). Springer-Verlag. pp. 463–464. ISBN 978-3-540-77269-9. Zbl 1145.12001.
63. ^ Leriche, Amandine (2011). "Pólya fields, Pólya groups and Pólya extensions: a question of capitulation". J. Théor. Nombres Bordx. 23: 235–249. Zbl 1282.13040.
64. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. 67. American Mathematical Society. p. 453. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
65. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. 67. American Mathematical Society. p. 463. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
66. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library. 19. Washington, D.C.: Mathematical Association of America. p. 100. ISBN 978-0-88385-619-2. Zbl 0166.16402.
67. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library. 19. Washington, D.C.: Mathematical Association of America. p. 95. ISBN 978-0-88385-619-2. Zbl 0166.16402.
68. ^ Erickson, Martin J. (2014). Introduction to Combinatorics. Discrete Mathematics and Optimization. 78 (2 ed.). John Wiley & Sons. p. 134. ISBN 1118640217.
69. ^ Imre, Sandor; Gyongyosi, Laszlo (2012). Advanced Quantum Communications: An Engineering Approach. John Wiley & Sons. p. 112. ISBN 1118337433.
70. ^ Oh, Suho; Postnikov, Alex; Speyer, David E (20 Sep 2011). "Weak Separation and Plabic Graphs". arXiv:1109.4434 [math.CO].
71. ^ de Berg, Mark; Meulemans, Wouter; Speckmann, Bettina (2011). "Delineating imprecise regions via shortest-path graphs". SIGSPATIAL. 19: 271-280. doi:10.1145/2093973.2094010. Retrieved 2 September 2019.https://en.wikipedia.org/wiki/User:Sameera_Kannangara/sandbox
72. ^ Manjunath, Madhusudan; Sturmfels, Bernd (2013). "Monomials, binomials and Riemann-Roch". J. Algebr. Comb. 37 (4): 737–756. doi:10.1007/s10801-012-0386-9. Zbl 1272.13017.
73. ^ Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. SpringerBriefs in Mathematics. Springer-Verlag. ISBN 1461469716.
74. ^ Zhao, Xiang-Yu, Bin Huang, Ming Tang, Hai-Feng Zhang, and Duan-Bing Chen. "Identifying effective multiple spreaders by coloring complex networks." EPL (Europhysics Letters) 108, no. 6 (2015): 68005. arXiv.org preprint
75. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 11 (3rd ed.). Springer-Verlag. p. 613. ISBN 3-540-22811-X. Zbl 1055.12003.
76. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 11 (3rd ed.). Springer-Verlag. p. 352. ISBN 3-540-22811-X. Zbl 1055.12003.
77. ^ Tao, Terence (2012). Higher-order Fourier analysis. Graduate Studies in Mathematics. 142. Providence, RI: American Mathematical Society. ISBN 978-0-8218-8986-2. Zbl 1277.11010.
78. ^ a b Tao, Terence (2012). Higher-order Fourier analysis. Graduate Studies in Mathematics. 142. Providence, RI: American Mathematical Society. p. 92. ISBN 978-0-8218-8986-2. Zbl 1277.11010.
79. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. 82. Providence, RI: American Mathematical Society. p. 207. ISBN 978-0-8218-0738-5. Zbl 0793.16029.
80. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. p. 135. ISBN 0-226-42451-0. Zbl 1001.16500.
81. ^ Deligne, Pierre; Etingof, Pavel; Freed, Daniel S.; Jeffrey, Lisa C.; Kazhdan, David; Morgan, John W.; Morrison, David R.; Witten, Edward, eds. (1999). Quantum fields and strings: a course for mathematicians. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. 2. Providence, RI: American Mathematical Society. p. 884. ISBN 0-8218-8621-5. Zbl 0984.00503.
82. ^ Belavin, A.A. (1980). "Discrete groups and integrability of quantum systems". Funkts. Anal. Prilozh. 14 (4): 18–26. Zbl 0454.22012.
83. ^ Joao Caramalho Domingues (2014). "The repercussion of José Anastácio da Cunha in Britain and the USA in the nineteenth century". BSHM Bulletin. 20 (1): 32–50. doi:10.1080/17498430.2013.802111.
84. ^ Roquette, Peter (2013). "The remarkable career of Otto Grün". Contributions to the history of number theory in the 20th century. Heritage of European Mathematics. Zürich: European Mathematical Society. pp. 77–116. ISBN 978-3-03719-113-2. Zbl 1276.11001.
85. ^ Brualdi, Richard A. (2006). Combinatorial Matrix Classes,. Encyclopedia of Mathematics and its Applications. 108. Cambridge University Press. p. 401. ISBN 0-521-86565-4. ISSN 0953-4806.
86. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. 78. Providence, RI: American Mathematical Society. p. 45. ISBN 0-8218-0730-7. Zbl 0714.16001.
87. ^ Guterman, Alexander E. (2008). "Rank and determinant functions for matrices over semirings". In Young, Nicholas; Choi, Yemon (eds.). Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series. 347. Cambridge University Press. pp. 1–33. ISBN 0-521-70564-9. ISSN 0076-0552. Zbl 1181.16042.
88. ^ http://nuclearstrategy.co.uk/prime-number-distribution-series
89. ^ http://www.codeproject.com/Tips/816931/Prime-Number-Distribution-Series/
90. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 307. ISBN 3-540-21902-1. Zbl 1159.11039.
91. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 416. ISBN 3-540-51250-0. Zbl 0717.11045.
92. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 123. ISBN 3-540-21902-1. Zbl 1159.11039.
93. ^ Romanoff, N. P. (1934). "Über einige Sätze der additiven Zahlentheorie". Math. Ann. (in German). 109: 668–678. JFM 60.0131.03.
94. ^ Rosen, Michael (2002). Number theory in function fields. Graduate Texts in Mathematics. 210. New York, NY: Springer-Verlag. p. 157. ISBN 0-387-95335-3. Zbl 1043.11079.
95. ^ Bossert, Walter; Suzumura, Kōtarō (2010). Consistency, choice and rationality. Harvard University Press. p. 36. ISBN 0674052994.
96. ^ Ash, Robert B. (1965). Information Theory. New York: Interscience. p. 68.
97. ^ Da Prato, Giuseppe; Zabczyk, Jerzy (2014). Stochastic equations in infinite dimensions. Cambridge University Press. p. 58.
98. ^ Capon, Jack (1964). "Randon-Nikodym Derivatives of Stationary Gaussian Measures". The Annals of Mathematical Statistics: 517–531. JSTOR 2238506.
99. ^ Gantmacher, F.R. (2005) [1959]. Applications of the theory of matrices. Dover. ISBN 0-486-44554-2. Zbl 0085.01001.
100. ^ a b c Turzański, Marian (1992). "Strong sequences, binary families and Esenin-Volpin's theorem". Comment.Math.Univ.Carolinae. 33 (3): 563–569. MR 1209298. Zbl 0796.54031.
101. ^ Arhangel'Skii, A. (1996). General topology II: compactness, homologies of general spaces. Encyclopaedia of mathematical sciences. 50. Springer-Verlag. p. 59. ISBN 0-387-54695-2. Zbl 0830.00013.
102. ^ a b Arhangelʹskiĭ, A. V. (1969). "An approximation of the theory of dyadic bicompacta". Dokl. Akad. Nauk SSSR (in Russian). 184: 767–770. MR 0243485.
103. ^ Tall, Franklin D. (1976). "The density topology". Pac. J. Math. 62: 275–284. Zbl 0305.54039.
104. ^ Šunić, Zoran (2014). "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)". Bulletin of the American Mathematical Society. 51 (2): 361–366. doi:10.1090/S0273-0979-2013-01425-3.