Wikipedia:Requested articles/Mathematics

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Add your request in the most appropriate place below.

Before adding a request please:


By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Also, when adding a request, please include as much information as possible (such as webpages, articles, or other reference material) so editors can find and distinguish your request from an already-created article.

Shortcut:

See also: User:Mathbot/Most wanted redlinks.

Contents

Abstract algebra[edit]

Algebraic geometry[edit]

Algorithm[edit]

Applied mathematics[edit]

Approximation theory[edit]

Arithmetic geometry[edit]

Calculus of variations[edit]

Category theory[edit]

Coding theory[edit]

Combinatorics[edit]

Complex analysis[edit]

Complexity theory[edit]

Convex analysis / Optimization[edit]

Cryptography[edit]

Deformation theory[edit]

Differential equations[edit]

Differential geometry and topology[edit]

Dynamical systems[edit]

Elementary arithmetic[edit]

1+1(Elementary arithmetic)(ja:1+1)

Functional analysis[edit]

Field theory[edit]

Galois theory[edit]

Game theory[edit]

Geometry[edit]

Graph theory[edit]

Group theory[edit]

Harmonic analysis[edit]

History of mathematics and other cultural aspects[edit]

History of mathematics Journals[edit]

Homological algebra[edit]

Integrable systems[edit]

K theory[edit]

Lie groups, Algebraic groups / Lie algebras[edit]

Linear algebra[edit]

Mathematical analysis[edit]

Mathematics education[edit]

Mathematical logic[edit]

Requests for articles about mathematical logic are on a separate page, and should be added there.

Mathematical physics[edit]

Mathematicians[edit]

Prior to creating an article, any biographical details can be added to: Wikipedia:WikiProject Mathematics/missing mathematicians.

A–G[edit]

H–N[edit]

O–Z[edit]

Matrices[edit]

Measure theory[edit]

Number theory[edit]

Recreational number theory[edit]

Elementary number theory[edit]

Algebraic number theory[edit]

Analytic number theory[edit]

Numerical analysis[edit]

Order theory[edit]

Probability theory[edit]

Quantum stochastic calculus[edit]

Real analysis[edit]

Leibniz transmutation method

Recreational mathematics[edit]

Representation theory (incl. harmonic analysis)[edit]

Semigroup theory[edit]

Special functions[edit]

Statistics[edit]

Topology[edit]

Algebraic topology[edit]

General topology[edit]

Geometric topology[edit]

Knot theory[edit]

Stable homotopy theory[edit]

Uncategorized[edit]

Please try to classify these requests.

See also[edit]

References[edit]

  1. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 254. ISBN 3-540-21902-1. Zbl 1159.11039. 
  2. ^ Garibaldi, Skip; Petersson, Holger P. (2011). "Wild Pfister forms over Henselian fields, K-theory, and conic division algebras". J. Algebra 327: 386–465. Zbl 1222.17009. 
    Loos, Ottmar (2011). "Algebras with scalar involution revisited". J. Pure Appl. Algebra 215: 2805–2828. Zbl 1229.14002. 
  3. ^ a b Bhargava, Manjul; Ho, Wei (2013). "Coregular spaces and genus one curves". arXiv:1306.44241 [math.AG].
  4. ^ Reiner, I. (2003). Maximal Orders. London Mathematical Society Monographs. New Series 28. Oxford University Press. pp. 294–298. ISBN 0-19-852673-3. Zbl 1024.16008. 
  5. ^ Tian, Jianjun Paul (2008). Evolution Algebras and Their Applications. Lecture Notes in Mathematics 1921. Springer-Verlag. ISBN 3-540-74283-2. Zbl 1136.17001. 
  6. ^ Niemczyk, Rolf; Walcher, Sebastian (1991). "Birational maps and a generalization of power-associative algebras". Commun. Algebra 19 (8): 2169–2194. Zbl 0786.17001. 
  7. ^ Berstel, Jean; Reutenauer, Christophe (1988). Rational series and their languages. EATCS Monographs on Theoretical Computer Science 12. Berlin: Springer-Verlag. ISBN 3642732372. Zbl 0668.68005. 
    Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications 137. Cambridge: Cambridge University Press. ISBN 978-0-521-19022-0. Zbl 1250.68007. 
  8. ^ Choie, Y.; Diamantis, N. (2006). "Rankin-Cohen brackets on higher order modular forms". In Friedberg, Solomon. Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005. Proc. Symp. Pure Math. 75. Providence, RI: American Mathematical Society. pp. 193–201. ISBN 0-8218-3963-2. Zbl 1207.11052. 
  9. ^ Chabert, Jean-Luc (1979). "Anneaux de Skolem". Arch. Math. (in French) 32: 555–568. Zbl 0403.13008. 
  10. ^ Schafer, R.D. (1985). "On structurable algebras". J. Algebra 92: 400–412. Zbl 0552.17001. 
  11. ^ Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs 2. American Mathematical Society. p. 41. ISBN 0-8218-7178-1. 
    Taylor, Martin (1984). Classgroups of group rings. LMS Lecture Notes 91. Cambridge University Press. p. 26. ISBN 0-521-27870-8. 
  12. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 37. ISBN 3-540-51250-0. Zbl 0717.11045. 
  13. ^ Gabber, Ofer; Ramero, Lorenzo (2003). Almost ring theory. Lecture Notes in Mathematics 1800. Berlin: Springer-Verlag. doi:10.1007/b10047. ISBN 3-540-40594-1. MR 2004652. 
    Notes by Torsten Wedhorn
  14. ^ Soulé, C.; Abramovich, Dan; Burnol, J.-F.; Kramer, Jürg (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33. Joint work with H. Gillet. Cambridge: Cambridge University Press. p. 36. ISBN 0-521-47709-3. Zbl 0812.14015. 
  15. ^ Consani, Caterina; Connes, Alain, eds. (2011). Noncommutative geometry, arithmetic, and related topics. Proceedings of the 21st meeting of the Japan-U.S. Mathematics Institute (JAMI) held at Johns Hopkins University, Baltimore, MD, USA, March 23–26, 2009. Baltimore, MD: Johns Hopkins University Press. ISBN 1-4214-0352-8. Zbl 1245.00040. 
  16. ^ Machiel van Frankenhuijsen (2014). The Riemann Hypothesis for function fields. LMS Student Texts 80. Cambridge University Press. ISBN 978-1-107-6531-4 Check |isbn= value (help). 
  17. ^ Ballico, E. (2011). "Scroll codes over curves of higher genus: Reducible and superstable vector bundles". Designs, Codes and Cryptography 63 (3): 365. doi:10.1007/s10623-011-9561-6.  edit
  18. ^ Sanyal, Raman; Sturmfels, Bernd; Vinzant, Cynthia (2013). "The entropic discriminant". Adv. Math. 244: 678–707. Zbl 06264349. 
  19. ^ Björner, Anders; Ziegler, Günter M. (1992). 8. Introduction to greedoids. In White, Neil. "Matroid Applications". Matroid applications. Encyclopedia of Mathematics and its Applications 40 (Cambridge: Cambridge University Press). pp. 284–357. doi:10.1017/CBO9780511662041.009. ISBN 0-521-38165-7. MR 1165537. Zbl 0772.05026. 
  20. ^ De Medts, Tom; Weiss, Richard M. (2006). "Moufang sets and Jordan division algebras". Math. Ann. 335 (2): 415–433. Zbl 1163.17031. 
  21. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005. 
  22. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005. 
  23. ^ Kantor, William M.; Seress, Ákos (2001). Black Box Classical Groups. Memoirs of the American Mathematical Society 708. American Mathematical Society. ISBN 0-8218-2619-0. ISSN 0065-9266. 
  24. ^ *Soulé, C. (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33. with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge University Press. ISBN 0-521-41669-8. MR 1208731. Zbl 0812.14015. 
  25. ^ Lapidus, Michel L.; van Frankhuijsen, Machiel (2006). Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in Mathematics. Springer-Verlag. ISBN 0-387-33285-5. 
  26. ^ Sidorov, Nikita (2003). "Arithmetic dynamics". In Bezuglyi, Sergey; Kolyada, Sergiy. Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000. Lond. Math. Soc. Lect. Note Ser. 310. Cambridge: Cambridge University Press. pp. 145–189. ISBN 0-521-53365-1. Zbl 1051.37007. 
  27. ^ Dooley, Anthony H. (2003). "Markov odometers". In Bezuglyi, Sergey; Kolyada, Sergiy. Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000. Lond. Math. Soc. Lect. Note Ser. 310. Cambridge: Cambridge University Press. pp. 60–80. ISBN 0-521-53365-1. Zbl 1063.37005. 
  28. ^ Baake, Michael; Moody, Robert V., eds. (2000). Directions in mathematical quasicrystals. CRM Monograph Series 13. Providence, RI: American Mathematical Society. p. 237. ISBN 0-8218-2629-8. Zbl 0955.00025. 
  29. ^ Walters, Peter (2000). An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer-Verlag. p. 207. ISBN 0-387-95152-0. ISSN 0072-5285. 
  30. ^ a b Azizov, T.Ya.; Iokhvidov, E.I.; Iokhvidov, I.S. (1983). "On the connection between the Cayley-Neumann and Potapov-Ginzburg transformations". Funkts. Anal. (in Russian) 20: 3–8. Zbl 0567.47031. 
  31. ^ e.g. Cwikel et al., On the fundamental lemma of interpolation theory, J. Approx. Theory 60 (1990) 70–82
  32. ^ Leriche, Amandine (2011). "Pólya fields, Pólya groups and Pólya extensions: a question of capitulation". J. Théor. Nombres Bordx. 23: 235–249. Zbl 1282.13040. 
  33. ^ Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. SpringerBriefs in Mathematics. Springer-Verlag. ISBN 1461469716. 
  34. ^ Connes, Alain; Marcolli, Matilde (2008). Noncommutative Geometry, Quantum Fields and Motives. Colloquium publications 55. American Mathematical Society. p. 69. ISBN 0-8218-4210-2. ISSN 0065-9258. 
  35. ^ * Roquette, Peter (2013). "The remarkable career of Otto Grün". Contributions to the history of number theory in the 20th century. Heritage of European Mathematics. Zürich: European Mathematical Society. pp. 77–116. ISBN 978-3-03719-113-2. Zbl 1276.11001. 
  36. ^ [1]
  37. ^ Brualdi, Richard A. (2006). Combinatorial Matrix Classes,. Encyclopedia of Mathematics and its Applications 108. Cambridge University Press. p. 401. ISBN 0-521-86565-4. ISSN 0953-4806. 
  38. ^ Guterman, Alexander E. (2008). "Rank and determinant functions for matrices over semirings". In Young, Nicholas; Choi, Yemon. Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series 347. Cambridge University Press. pp. 1–33. ISBN 0-521-70564-9. ISSN 0076-0552. Zbl 1181.16042. 
  39. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 307. ISBN 3-540-21902-1. Zbl 1159.11039. 
  40. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 416. ISBN 3-540-51250-0. Zbl 0717.11045. 
  41. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 123. ISBN 3-540-21902-1. Zbl 1159.11039. 
  42. ^ Arakawa, Tsuneo; Kaneko, Masanobu (1999). "Multiple zeta values, poly-Bernoulli numbers, and related zeta functions". Nagoya Math. J. 153: 189–209. Zbl 0932.11055. 
    Coppo, Marc-Antoine; Candelpergher, Bernard (2010). "The Arakawa-Kaneko zeta function". Ramanujan J. 22: 153–162. Zbl 1230.11106. 
  43. ^ Šunić, Zoran (2014). "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)". Bulletin of the American Mathematical Society 51 (2): 361–366. doi:10.1090/S0273-0979-2013-01425-3.