Wild arc

From Wikipedia, the free encyclopedia
The Fox–Artin wild arc lying in drawn as a knot diagram. Note that each "tail" of the arc is converging to a point.

In geometric topology, a wild arc is an embedding of the unit interval into 3-dimensional space not equivalent to the usual one in the sense that there does not exist an ambient isotopy taking the arc to a straight line segment. Antoine (1920) found the first example of a wild arc, and Fox & Artin (1948) found another example called the Fox-Artin arc whose complement is not simply connected.

See also[edit]

Further reading[edit]

  • Antoine, L. (1920), "Sur la possibilité d'étendre l'homéomorphie de deux figures à leurs voisinages", C. R. Acad. Sci. Paris (in French), 171: 661
  • Fox, Ralph H.; Harrold, O. G. (1962), "The Wilder arcs", Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice Hall, pp. 184–187, MR 0140096
  • Fox, Ralph H.; Artin, Emil (1948), "Some wild cells and spheres in three-dimensional space", Annals of Mathematics, Second Series, 49 (4): 979–990, doi:10.2307/1969408, ISSN 0003-486X, JSTOR 1969408, MR 0027512
  • Hocking, John Gilbert; Young, Gail Sellers (1988) [1961]. Topology. Dover. pp. 176–177. ISBN 0-486-65676-4.
  • McPherson, James M. (1973), "Wild arcs in three-space. I. Families of Fox–Artin arcs", Pacific Journal of Mathematics, 45 (2): 585–598, doi:10.2140/pjm.1973.45.585, ISSN 0030-8730, MR 0343276