From Wikipedia, the free encyclopedia
Jump to: navigation, search
Temporal range: Late Oligocene to present
Melanerpes striatus001.jpg
Hispaniolan woodpecker

About this sound Tapping sound of a woodpecker 

Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Piciformes
Suborder: Pici
Family: Picidae
Leach, 1820

Jynginae – wrynecks
Nesoctitinae – Antillean piculet
Picinae – woodpeckers, sapsuckers
Picumninae – typical piculets

The woodpeckers are part of the family Picidae, a group of near-passerine birds that also consist of piculets, wrynecks, and sapsuckers. Members of this family are found worldwide, except for Australia, New Guinea, New Zealand, Madagascar, and the extreme polar regions. Most species live in forests or woodland habitats, although a few species are known that live in treeless areas, such as rocky hillsides and deserts, and the Gila woodpecker specialises in exploiting cacti.

The Picidae are just one of eight living families in the order Piciformes. Other members of Piciformes, such as the jacamars, puffbirds, barbets, toucans, and honeyguides, have traditionally been thought to be closely related to the woodpeckers, piculets, wrynecks, and sapsuckers. More recently, DNA sequence analyses have confirmed this view.[1]

There are about 200 species and about 30 genera in this family. Many species are threatened or endangered due to loss of habitat or habitat fragmentation.

General characteristics[edit]

The stiffened tails of woodpeckers are crucial for their climbing and foraging techniques. The tail is used as a prop. Here a black-rumped flameback rests while foraging using its tail for support. The plumage of some species is often iridescent. Although the sexes of Picidae species tend to look alike, many woodpecker species have more prominent red or yellow head markings in males than in females

The woodpeckers range from very tiny piculets measuring no more than 7 cm (2.8 in) and weighing 7 g (0.25 oz) to large woodpeckers which can be more than 50 cm (20 in) in length. The largest surviving species is the great slaty woodpecker, which weighs 360–563 g (12.7–19.9 oz), but the probably extinct imperial woodpeckers and ivory-billed woodpeckers were both larger.[2]

Woodpeckers have strong bills for drilling and drumming on trees and long sticky tongues for extracting food.[2] Woodpecker bills are typically longer, sharper and stronger than the bills of piculets and wrynecks; however, their morphology is very similar. The bill's chisel-like tip is kept sharp by the pecking action in birds that regularly use it on wood. The beak consists of three layers; an outer sheath called rhamphotheca, made of scales formed from keratin proteins, an inner layer of bone which has a large cavity and mineralized collagen fibers, and a middle layer made of porous bone which connects the two other layers. Combined, this anatomy helps the beak absorb mechanical stress.[3] Species of woodpecker and flicker that use their bills in soil or for probing as opposed to regular hammering tend to have longer and more decurved bills. Due to their smaller bill size, many piculets and wrynecks will forage in decaying wood more often than woodpeckers. The long sticky tongues, which possess bristles, aid these birds in grabbing and extracting insects deep within a hole of a tree. It had been reported that the tongue was used to spear grubs, but more detailed studies published in 2004 have shown that the tongue instead wraps around the prey before being pulled out.[4]

Many of the foraging, breeding and signaling behaviors of woodpeckers involve drumming and hammering using the bill.[5] To prevent brain damage from the rapid and repeated impacts, woodpeckers have a number of physical features evolved to protect the brain. These include a relatively small and smooth brain, narrow subdural space, little cerebrospinal fluid (CSF) surrounding it to prevent it from moving back and forth inside the skull during pecking, the orientation of the brain within the skull (which maximises the contact area between the brain and the skull) and the short duration of contact. The skull consists of strong but compressible sponge-like bone which is most concentrated in the forehead and the back of the skull.[6] Computer simulations have shown that 99.7 percent of the energy generated in pecking was stored in the form of strain energy, which was distributed throughout the bird's body, with only a small remaining fraction of the energy going into the brain. The pecking also heats up the woodpecker's skull, which is part of the reason why they often peck in short bursts with brief breaks in between, giving the head some time to cool.[7] During the millisecond before contact with wood, a thickened nictitating membrane closes, protecting the eye from flying debris.[8] These membranes also prevent the retina from tearing. The nostrils are also protected; they are often slit-like and have special feathers to cover them. Woodpeckers are capable of repeated pecking on a tree at high decelerations on the order of 10,000 m/s2 (33,000 ft/s2) (1000 g).[9]

Woodpeckers, piculets and wrynecks all possess feet consisting of four toes, the first (hallux) and the fourth facing backward and the second and third facing forward. This foot arrangement is good for grasping the limbs and trunks of trees. Members of this family can walk vertically up a tree trunk, which is beneficial for activities such as foraging for food or nest excavation. In addition to their strong claws and feet, woodpeckers have short strong legs. This is typical of birds that regularly forage on trunks. Exceptions are the black-backed woodpecker and the American and Eurasian three-toed woodpeckers, which have only three toes on each foot. The tails of all woodpeckers except the piculets and wrynecks are stiffened, and when the bird perches on vertical surfaces, the tail and feet work together to support it.[2]

Distribution, habitat and movements[edit]

Use of cacti for breeding and roosting holes allows some woodpeckers, like this ladder-backed woodpecker, to live in otherwise treeless deserts

Global distribution[edit]

The woodpeckers have a mostly cosmopolitan distribution, although they are absent from Australasia, Madagascar, and Antarctica. They are also absent from some of the world's oceanic islands, although many insular species are found on continental islands. The true woodpeckers, subfamily Picinae, are distributed across the entire range of the family. The Picumninae piculets have a pantropical distribution, with species in Southeast Asia, Africa, and the Neotropics, with the greatest diversity being in South America. The second piculet subfamily, Nesoctitinae, has a single member, the Antillean piculet, which is restricted to the Caribbean island of Hispaniola. The wrynecks (Jynginae) are found exclusively in the Old World, with the two species occurring in Europe, Asia, and Africa.[10]

The majority of woodpeckers are sedentary but there are a few examples of migratory species such as the rufous-bellied woodpecker and yellow-bellied sapsucker,[10] and the Eurasian wryneck, which breeds in Europe and west Asia and migrates to the Sahel in Africa in the winter.[11] More northerly populations of Lewis's woodpecker, northern flicker, Williamson's sapsucker, red-breasted sapsucker and red-naped sapsucker all move southwards in the fall in North America.[12] Most woodpecker movements can be described as dispersive, such as when young birds seek territories after fledging, or eruptive, to escape harsh weather conditions. Several species are altitudinal migrants, for example the grey-capped woodpecker, which moves to lowlands from hills during the winter months The woodpeckers that do migrate do so during the day.[2]

Habitat requirements[edit]

Overall, the woodpeckers are arboreal birds of wooded habitats. They reach their greatest diversity in tropical rainforests, but occur in almost all suitable habitats including woodlands, savannahs, scrublands, and bamboo forests. Even grasslands and deserts have been colonised by various species. These habitats are more easily occupied where a small number of trees exist, or, in the case of desert species like the Gila woodpecker, tall cacti are available for nesting in.[13] Some are specialists and are associated with coniferous or deciduous woodland or even, like the acorn woodpecker, with individual tree genera (oaks in this case). Other species are generalists and are able to adapt to forest clearance by exploiting secondary growth, plantations, orchards and parks. In general, forest-dwelling species need rotting or dead wood on which to forage.[14]

A number of species are adapted to spending a portion of their time feeding on the ground, and a very small minority have abandoned trees entirely and nest in holes in the ground. The ground woodpecker is one such species, inhabiting the rocky and grassy hills of South Africa,[15] and the Andean flicker is another.[16]

The Swiss Ornithological Institute has set up a monitoring program to record breeding populations of woodland birds. This has shown that deadwood is an important habitat requirement for the black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker, European green woodpecker and Eurasian three-toed woodpecker. Populations of all these species increased by varying amounts in the period 1990 to 2008. During this period, the amount of deadwood in the forest increased and the range of the white-backed woodpecker enlarged as it extended eastwards. With the exception of the green and middle spotted woodpeckers, the increase in the amount of deadwood is likely to be the major factor explaining the population increase of these species.[17]

Two species of woodpeckers in the Americas, the ivory-billed woodpecker and the imperial woodpecker, have been considered extinct since the mid to late 20th century, though there have been possible but disputed sightings of ivory-billed woodpeckers in the United States since 2004,[18] and a small population may survive in Cuba.[19]


The majority of woodpeckers live solitary lives, but the spectrum of behaviour ranges from highly antisocial species that are aggressive towards their own kind, to species that live in groups. Solitary species will defend such feeding resources as a termite colony or fruit laden tree, driving away other conspecifics and returning frequently until the resource is exhausted. Aggressive behaviours include bill-pointing and jabbing, head shaking, wing flicking, chasing, drumming and vocalisations. Ritual actions do not usually result in contact and birds may "freeze" for a while before they resume their dispute. The coloured patches may be flouted, and in some instances, these antagonistic behaviours resemble courtship rituals.[20]

Group-living species tend to be communal group breeders.[20] In addition to these species, a number of species may join mixed-species foraging flocks with other insectivorous birds, although they tend to stay at the edges of these groups. Joining these flocks allows woodpeckers to decrease their anti-predator vigilance and increase their feeding rate.[21] Woodpeckers are diurnal, roosting at night inside holes and crevices. In many species the roost will become the nestsite during the breeding season, but in some species they have separate functions; the grey-and-buff woodpecker makes several shallow holes for roosting which are quite distinct from its nesting site. Most birds roost alone and will oust intruders from their chosen site, but the Magellanic woodpecker and acorn woodpecker are cooperative roosters.[20]


Drumming is a form of non-vocal communication used by most species of woodpecker and involves the bill being repeatedly struck on a hard surface with great rapidity. After a pause, the drum roll is repeated, each species having a pattern which is unique in the number of beats in the roll, the length of the roll, the length of the gap between rolls and the cadence. The drumming is mainly a territorial call, equivalent to the song of a passerine, with male birds drumming more frequently than females.[22] The woodpecker chooses a surface that resonates, such as a hollow tree, and may use manmade structures such as gutters and downpipes.[23] Drumming serves for the mutual recognition of conspecifics and plays a part in courtship rituals. Individual birds are thought to be able to distinguish the drumming of their mates and that of their neighbours.[24]


Woodpeckers do not have such a wide range of songs and calls as do passerine birds, and the sounds they make tend to be simpler in structure. Calls produced include brief high-pitched notes, trills, rattles, twittering, whistling, chattering, nasal churrs, screams and wails. These calls are used by both sexes in communication and are related to the circumstances of the occasion; these include courtship, territorial disputes and alarm calls. Each species has its own range of calls, which tend to be in the 1 to 2.5 kHz range for efficient transmission through forested environments. Mated couples may exchange muted, low-pitched calls, and nestlings issue noisy begging-calls from inside their nest cavity.[22] The wrynecks have a more musical song and in some areas, the song of the newly arrived Eurasian wryneck is considered to be the harbinger of spring.[25] The piculets either have a song consisting of a long descending trill, or a descending series of two to six (sometimes more) individual notes, and this song alerts ornithologists to the presence of the birds, as they are easily overlooked.[26]

Diet and feeding[edit]

Holes bored by feeding woodpeckers

The majority of woodpecker species live up to their name and feed on insects and other invertebrates living under bark and in wood, but overall the family is characterized by its dietary flexibility, with many species being both highly omnivorous and opportunistic. The diet includes ants, termites, beetles and their larvae, caterpillars, spiders, other arthropods, bird eggs, nestlings, small rodents, lizards, fruit, nuts and sap. Many insects and their grubs are taken from living and dead trees by excavation. The bird may hear sounds from inside the timber indicating where it will be productive to create a hole.[20]

Other means are also used to garner prey. Some species such as the red-naped sapsucker sally into the air to catch flying insects, and many species probe into crevices and under bark, or glean prey from leaves and twigs. The rufous woodpecker specialises in attacking the nests of arboreal ants and the buff-spotted woodpecker feeds on and nests in termite mounds. Other species such as the wrynecks and the Andean flicker feed wholly or partly on the ground.[20]

Ecologically, woodpeckers help to keep trees healthy by keeping them from suffering mass infestations. The family is noted for its ability to acquire wood-boring grubs from the trunks and branches, whether the timber is alive or dead. Having hammered a hole into the wood, the prey is extracted by use of a long barbed tongue. Woodpeckers consume beetles that burrow into trees, removing as many as 85 percent of emerald ash borer larvae from individual ash trees.[27]

The ability to excavate allows woodpeckers to obtain tree sap, an important source of food for some species. Most famously, the sapsuckers (genus Sphyrapicus) feed in this fashion, but the technique is not restricted to these, and others such as the acorn woodpecker and white-headed woodpecker also feed on sap. It was once thought that the technique was restricted to the New World, but Old World species, such as the Arabian woodpecker and great spotted woodpecker, also feed in this way.[2]


A male black woodpecker attending its chicks

All members of the family Picidae nest in cavities, nearly always in the trunks and branches of trees, well away from the foliage. Where possible, an area of rotten wood surrounded by sound timber is used. Where trees are in short supply, the gilded flicker and ladder-backed woodpecker excavate holes in cactus and the Andean flicker and ground woodpecker dig holes in earth banks. The campo flicker sometimes chooses termite mounds, the rufous woodpecker prefers to use ants nests in trees and the bamboo woodpecker specialises in bamboos.[28] Woodpeckers also excavate nest holes in residential and commercial structures as well as wooden utility poles.[27]

Woodpeckers and piculets will excavate their own nests, but wrynecks will not, and need to find pre-existing cavities. A typical nest has a round entrance hole that just fits the bird, leading to an enlarged vertical chamber below. No nesting material is used, apart from some wood chips produced during the excavation; other wood chips are liberally scattered on the ground providing visual evidence of the site of the nest.[29] Many species of woodpeckers excavate one hole per breeding season, sometimes after multiple attempts. It takes around a month to finish the job and abandoned holes are used by other birds and mammals that are cavity nesters unable to excavate their own holes.[30]

Cavities are in great demand for nesting by other cavity nesters, so woodpeckers face competition for the nesting sites they excavate from the moment the hole becomes usable. This may come from other species of woodpecker, or other cavity nesting birds like swallows and starlings. Woodpeckers may aggressively harass potential competitors, and also use other strategies to reduce the chance of being usurped from their nesting site; for example the red-crowned woodpecker digs its nest in the underside of a small branch, which reduces the chance that a larger species will take it over and expand it.[31]

Members of Picidae are typically monogamous, with a few species breeding cooperatively and some polygamy reported in a few species.[32] Polyandry, where a female raises two broods with two separate males, has also been reported in the West Indian woodpecker.[33] Another unusual social system is that of the acorn woodpecker, which is a polygynandrous cooperative breeder where groups of up to 12 individuals breed and help to raise the young.[2] Young birds from previous years may stay behind to help raise the group's young, and studies have found reproductive success for the group goes up with group size, but individual success goes down. Birds may be forced to remain in groups due to a lack of habitat to disperse to.[34]

A pair will work together to help build the nest, incubate the eggs and raise their altricial young. However, in most species the male does most of the nest excavation and takes the night shift while incubating the eggs. A nest will usually consist of two to five round white eggs. Since these birds are cavity nesters, their eggs do not need to be camouflaged and the white color helps the parents to see them in dim light. The eggs are incubated for about 11–14 days before the chicks are born. It takes about 18–30 days before the young are ready to leave the nest.

Systematics and evolution[edit]

The family Picidae was introduced by the English zoologist William Elford Leach in a guide to the contents of the British Museum published in 1820.[35][36]

The phylogeny has been updated according to new knowledge about convergence patterns and evolutionary history.[37][38] Most notably, the relationship of the picine genera has been largely clarified, and it was determined that the Antillean piculet is a surviving offshoot of proto-woodpeckers.

The evolutionary history of this group is not well documented, but the known fossils allow some preliminary conclusions: the earliest known modern picids were piculet-like forms of the Late Oligocene, about 25 million years ago (mya). By that time, however, the group was already present in the Americas and Europe, and it is hypothesized that they actually evolved much earlier, maybe as early as the Early Eocene (50 mya). The modern subfamilies appear to be rather young by comparison; until the mid-Miocene (10–15 mya), all picids seem to have been small or mid-sized birds similar to a mixture between a piculet and a wryneck. On the other hand, there exists a feather enclosed in fossil amber from the Dominican Republic, dated to about 25 mya, which seems to indicate that the Nesoctitinae were already a distinct lineage by then.[39]

Prehistoric representatives of the extant Picidae genera are treated in the genus articles. An enigmatic form based on a coracoid found in Pliocene deposits of New Providence, Bahamas, has been described as Bathoceleus hyphalus and probably also is a woodpecker.[40]

List of genera[edit]

Ochre-collared piculet
(Picumnus temminckii)
Red-crowned woodpecker
Melanerpes rubricapillus rubricapillus
female, Tobago
Cuban green woodpecker
Xiphidiopicus percussus
female, Cuba
Campo flicker
Colaptes campestris
female, Brazil

Family: Picidae

  • Basal
  • Incertae sedis
    • †Picidae gen. et sp. indet. (Middle Miocene of New Mexico, USA)
    • †Picidae gen. et sp. indet. (Late Miocene of Gargano Peninsula, Italy)
  • Subfamily: Jynginaewrynecks
    • Genus: Jynx (2 species)
  • Subfamily: Picumninae – typical piculets
    • Genus: Picumnus – American piculets (c.27 species)
    • Genus: Verreauxia – African piculet (sometimes included in Sasia)
    • Genus: Sasia – Asian piculets (2 species)
  • Subfamily: Nesoctitinae
  • Subfamily: Picinae – woodpeckers

See also[edit]


  1. ^ The taxonomic committee of the British Ornithologists' Union have recommended an arrangement in which the genera Dendrocoptes and Leiopicus are combined into a larger Dendropicos.[41]


  1. ^ Johansson, U. S.; Ericson, G. P. (2003). "Molecular support for a sister group relationship between Pici and Galbulae (Piciformes sensu Wetmore 1960)" (PDF). J. Avian Biol. 34 (2): 185–197. doi:10.1034/j.1600-048X.2003.03103.x. 
  2. ^ a b c d e f Winkler, Hans & Christie, David A. (2002), "Family Picidae (Woodpeckers)" in del Hoyo, J.; Elliot, A. & Sargatal, J. (editors). (2002). Handbook of the Birds of the World. Volume 7: Jacamars to Woodpeckers. Lynx Edicions. ISBN 84-87334-37-7
  3. ^ Woodpecker Beak Shock Absorbers
  4. ^ Villard, Pascal; Cuisin, Jacques (2004). "How do woodpeckers extract grubs with their tongues? A study of the Guadeloupe woodpecker (Melanerpes herminieri) in the French Indies". Auk. 121 (2): 509–514. doi:10.1642/0004-8038(2004)121[0509:HDWEGW]2.0.CO;2. 
  5. ^ Gibson, L. (2006). "Woodpecker pecking: how woodpeckers avoid brain injury". Journal of Zoology. 270 (3): 462–465. doi:10.1111/j.1469-7998.2006.00166.x. 
  6. ^ Why woodpeckers don’t get headaches
  7. ^ Woodpecker Bodies Cushion Collision Impact On Bird Brains
  8. ^ Schwab, I. (2002). "Cure for a headache". British Journal of Ophthalmology. 86 (8): 843. doi:10.1136/bjo.86.8.843. 
  9. ^ Gibson, L. J. (23 February 2006). "Woodpecker pecking: how woodpeckers avoid brain injury". Journal of Zoology. 270: 462–465. ISSN 0952-8369. doi:10.1111/j.1469-7998.2006.00166.x. Retrieved 2014-03-23. 
  10. ^ a b Gorman 2014, p. 15
  11. ^ Reichlin, Thomas; Schaub, Michael; Menz, Myles H. M.; Mermod, Murielle; Portner, Patricia; Arlettaz, Raphaël; Jenni, Lukas (2008). "Migration patterns of Hoopoe Upupa epops and Wryneck Jynx torquilla : an analysis of European ring recoveries". Journal of Ornithology. 150 (2): 393–400. doi:10.1007/s10336-008-0361-3. 
  12. ^ Gorman 2014, p. 15
  13. ^ Korol, Jerome; Hutto, Richard (1984). "Factors Affecting Nest Site Location in Gila Woodpeckers" (PDF). Condor. 86 (1): 73–78. JSTOR 1367350. doi:10.2307/1367350. 
  14. ^ Gorman 2014, p. 18
  15. ^ Short, Lester (1971). "The evolution of terrestrial woodpeckers". American Museum novitates. 2467. 
  16. ^ Gorman 2014, p. 18
  17. ^ Mollet, P.; Zbinden, N.; Schmid, H. (2009). "An increase in the population of woodpeckers and other bird species thanks to an increase in the quantities of deadwood?". FAO. Retrieved 28 March 2017. 
  18. ^ "The search for the ivofy-billed woodpecker". Big Woods Conservation Partnership. Retrieved 2017-03-26. 
  19. ^ BirdLife International (2016). "Campephilus principalis". IUCN Red List of Threatened Species. Version 2016.3. International Union for Conservation of Nature. Retrieved 2017-03-26. 
  20. ^ a b c d e Gorman 2014, pp. 19–20
  21. ^ Kimberly, Sullivan (1984). "Information Exploitation By Downy Woodpeckers in Mixed-Species Flocks". Behavior. 91 (4): 294–311. doi:10.1163/156853984X00128. 
  22. ^ a b Gorman 2014, p. 28
  23. ^ Williams, Ernest H. Jr. (2005). The Nature Handbook: A Guide to Observing the Great Outdoors. Oxford University Press. p. 118. ISBN 978-0-19-972075-0. 
  24. ^ Sarkar, A. (2003). Fundamentals Of Animals Behaviour. Discovery Publishing House. p. 264. ISBN 978-81-7141-742-1. 
  25. ^ Noel, Thomas (1841). Rymes and Roundelayes. Smith. p. 144. 
  26. ^ Hilty, Steven L. (2002). Birds of Venezuela. Princeton University Press. p. 464. ISBN 1-4008-3409-0. 
  27. ^ a b Graham, Rex (24 July 2014). "Resilient Woodpeckers hard to knock – or stop". Birds News. Retrieved 24 March 2016. 
  28. ^ Gorman 2014, p. 20
  29. ^ Gorman 2014, p. 22
  30. ^ Kotaka, N.; Matsuoka, S. (2002). "Secondary users of Great Spotted Woodpecker (Dendrocopos major) nest cavities in urban and suburban forests in Sapporo City, northern Japan" (PDF). Ornithological Science. 1 (2): 117–122. doi:10.2326/osj.1.117. 
  31. ^ Short, Lester L. (1979). "Burdens of the Picid Hole-Excavating Habit" (PDF). Wilson Bulletin. 91 (1): 16–28. 
  32. ^ Wiktander, Ulf; Olsson, Ola; Nilsson, Sven G. (2000). "Parental care and social mating system in the Lesser Spotted Woodpecker Dendrocopos minor". Journal of Avian Biology. 31 (4): 447–456. doi:10.1034/j.1600-048X.2000.310003.x. 
  33. ^ Willimont, L. A.; Jackson, J. A.; Jackson, B. J. S. (1991). "Classical polyandry in the West Indian woodpecker on Abaco, Bahamas" (PDF). Wilson Bulletin. 103: 124–125. 
  34. ^ Koenig, Walter D. (1 January 1981). "Reproductive Success, Group Size, and the Evolution of Cooperative Breeding in the Acorn Woodpecker". The American Naturalist. 117 (4): 421–443. 
  35. ^ Leach, William Elford (1820). "Eleventh Room". Synopsis of the Contents of the British Museum (17th ed.). London: British Museum. pp. 65–70. OCLC 6213801.  Although the name of the author is not specified in the document, Leach was the Keeper of Zoology at the time.
  36. ^ Bock, Walter J. (1994). History and Nomenclature of Avian Family-Group Names. Bulletin of the American Museum of Natural History. Number 222. New York: American Museum of Natural History. pp. 146, 192. 
  37. ^ Benz, Brett W.; Robbins, Mark B.; Peterson, A. Townsend (2006). "Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree". Mol. Phylogenet. Evol. 40 (2): 389–399. PMID 16635580. doi:10.1016/j.ympev.2006.02.021. 
  38. ^ Moore, William S.; Weibel, Amy C.; Agius, Andrea (2006). "Mitochondrial DNA phylogeny of the woodpecker genus Veniliornis (Picidae, Picinae) and related genera implies convergent evolution of plumage patterns" (PDF). Biol. J. Linn. Soc. 87 (4): 611–624. doi:10.1111/j.1095-8312.2006.00586.x. 
  39. ^ Grimaldi, David A.; Case, Gerard Ramon (1995). "A feather in amber from the Upper Cretaceous of New Jersey" (PDF). American Museum Novitates. 3126: 1–6. 
  40. ^ Cracraft, Joel; Morony, John J., Jr. (1969). "A new Pliocene woodpecker, with comments on the fossil Picidae" (PDF). American Museum Novitates. 2400: 1–8. 
  41. ^ Sangster, G.; et al. (2016). "Taxonomic recommendations for Western Palearctic birds: 11th report". Ibis. 158 (1): 206–212. doi:10.1111/ibi.12322.  open access publication – free to read


  • Gorman, Gerard (2014). Woodpeckers of the World: A Photographic Guide. Firefly Books. ISBN 177085309X. 

Further reading[edit]

External links[edit]