Ziff–Gulari–Barshad model

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Ziff–Gulari–Barshad (ZGB) model is a simple Monte Carlo method for catalytic reactions of oxidation of carbon monoxide to carbon dioxide on a surface using Monte-Carlo methods which captures correctly the essential dynamics: the phase transition between two poisoned states (either CO2- or O-poisoned) and a steady-state in between. It is named after Robert M. Ziff, Erdogan Gulari, and Yoav Barshad, who published it in 1986.[1]

Model definition[edit]

The model consists of three steps:

  • Adsorption of the reacting species CO and O2
  • The actual reaction step on the surface: CO + O → CO2
  • Desorption of the products.

The simplest implementation considers the catalyst as simple square two-dimensional lattice, but one can also consider other kinds of underlying lattices.[2] When a gas-phase molecule touches an empty site, adsorption occurs immediately and the chemical reaction is also instantaneous. Furthermore, assumes that the composition of the gas phase remains constant.

Results and other work[edit]

The model belongs to the universality class of directed percolation.[3] The model was modified several times.[4] [5]


  1. ^ Ziff RM, Gulari E, Barshad Y (June 1986). "Kinetic phase transitions in an irreversible surface-reaction model". Phys Rev Lett. 56 (24): 2553–56. Bibcode:1986PhRvL..56.2553Z. doi:10.1103/PhysRevLett.56.2553. PMID 10033028. 
  2. ^ Gao, Zhuo; Yang, Z. (March 1989). "Dynamic scaling behavior of the Ziff–Gulari–Barshad model on regular fractal lattices: The influence of lacunarity". Physical Review E. 59 (3): 2795–2800. Bibcode:1999PhRvE..59.2795G. doi:10.1103/PhysRevE.59.2795. 
  3. ^ Grassberger, Peter (April 1995). "Are damage spreading transitions generically in the universality class of directed percolation?". Journal of Statistical Physics. 79 (1-2): 13–23. arXiv:cond-mat/9409068Freely accessible. Bibcode:1995JSP....79...13G. doi:10.1007/BF02179381. 
  4. ^ Beney, P; Droz, M; Frachebourg, L (21 July 1990). "On the critical behaviour of cellular automata models of nonequilibrium phase transitions". Journal of Physics A: Mathematical and General. 23 (14): 3353–3359. Bibcode:1990JPhA...23.3353B. doi:10.1088/0305-4470/23/14/031. 
  5. ^ Albano, Ezequiel (July 1992). "Critical exponents for the irreversible surface reaction A+B→AB with B desorption on homogeneous and fractal media". Physical Review Letters. 69 (4): 656–659. Bibcode:1992PhRvL..69..656A. doi:10.1103/PhysRevLett.69.656.