Jump to content

Methylomirabilis oxyfera: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
img ref
Citation bot (talk | contribs)
Add: doi-access, bibcode. Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Awkwafaba | Category:Candidatus taxa | #UCB_Category 41/118
Line 13: Line 13:
}}
}}


'''''Candidatus "''Methylomirabilis oxyfera"''' is a [[Candidatus|candidate]] species of [[Gram-negative bacteria]] belonging to the [[NC10 phylum]], characterized for its capacity to couple [[Anaerobic oxidation of methane|anaerobic methane oxidation]] with nitrite reduction in anoxic environments.<ref name=":0">{{Cite journal|last1=Ettwig|first1=Katharina F.|last2=Butler|first2=Margaret K.|last3=Le Paslier|first3=Denis|last4=Pelletier|first4=Eric|last5=Mangenot|first5=Sophie|last6=Kuypers|first6=Marcel M. M.|last7=Schreiber|first7=Frank|last8=Dutilh|first8=Bas E.|last9=Zedelius|first9=Johannes|last10=de Beer|first10=Dirk|last11=Gloerich|first11=Jolein|date=March 2010|title=Nitrite-driven anaerobic methane oxidation by oxygenic bacteria|url=https://www.nature.com/articles/nature08883|journal=Nature|language=en|volume=464|issue=7288|pages=543–548|doi=10.1038/nature08883|pmid=20336137|s2cid=205220000|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Haroon|first1=Mohamed F.|last2=Hu|first2=Shihu|last3=Shi|first3=Ying|last4=Imelfort|first4=Michael|last5=Keller|first5=Jurg|last6=Hugenholtz|first6=Philip|last7=Yuan|first7=Zhiguo|last8=Tyson|first8=Gene W.|date=August 2013|title=Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage|url=https://www.nature.com/articles/nature12375|journal=Nature|language=en|volume=500|issue=7464|pages=567–570|doi=10.1038/nature12375|pmid=23892779|s2cid=4368118|issn=1476-4687}}</ref> To acquire oxygen for methane oxidation, ''M. oxyfera'' utilizes an intra-aerobic pathway through the reduction of nitrite (NO<sub>2</sub>) to dinitrogen (N<sub>2</sub>) and oxygen.<ref name=":1">{{Cite journal|last1=Wu|first1=Ming L.|last2=Ettwig|first2=Katharina F.|last3=Jetten|first3=Mike S. M.|last4=Strous|first4=Marc|last5=Keltjens|first5=Jan T.|last6=Niftrik|first6=Laura van|date=2011-02-01|title=A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'|url=https://portlandpress.com/biochemsoctrans/article-abstract/39/1/243/84969/A-new-intra-aerobic-metabolism-in-the-nitrite?redirectedFrom=fulltext|journal=Biochemical Society Transactions|language=en|volume=39|issue=1|pages=243–248|doi=10.1042/BST0390243|pmid=21265781|issn=0300-5127}}</ref>
'''''Candidatus "''Methylomirabilis oxyfera"''' is a [[Candidatus|candidate]] species of [[Gram-negative bacteria]] belonging to the [[NC10 phylum]], characterized for its capacity to couple [[Anaerobic oxidation of methane|anaerobic methane oxidation]] with nitrite reduction in anoxic environments.<ref name=":0">{{Cite journal|last1=Ettwig|first1=Katharina F.|last2=Butler|first2=Margaret K.|last3=Le Paslier|first3=Denis|last4=Pelletier|first4=Eric|last5=Mangenot|first5=Sophie|last6=Kuypers|first6=Marcel M. M.|last7=Schreiber|first7=Frank|last8=Dutilh|first8=Bas E.|last9=Zedelius|first9=Johannes|last10=de Beer|first10=Dirk|last11=Gloerich|first11=Jolein|date=March 2010|title=Nitrite-driven anaerobic methane oxidation by oxygenic bacteria|url=https://www.nature.com/articles/nature08883|journal=Nature|language=en|volume=464|issue=7288|pages=543–548|doi=10.1038/nature08883|pmid=20336137|bibcode=2010Natur.464..543E|s2cid=205220000|issn=1476-4687}}</ref><ref>{{Cite journal|last1=Haroon|first1=Mohamed F.|last2=Hu|first2=Shihu|last3=Shi|first3=Ying|last4=Imelfort|first4=Michael|last5=Keller|first5=Jurg|last6=Hugenholtz|first6=Philip|last7=Yuan|first7=Zhiguo|last8=Tyson|first8=Gene W.|date=August 2013|title=Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage|url=https://www.nature.com/articles/nature12375|journal=Nature|language=en|volume=500|issue=7464|pages=567–570|doi=10.1038/nature12375|pmid=23892779|bibcode=2013Natur.500..567H|s2cid=4368118|issn=1476-4687}}</ref> To acquire oxygen for methane oxidation, ''M. oxyfera'' utilizes an intra-aerobic pathway through the reduction of nitrite (NO<sub>2</sub>) to dinitrogen (N<sub>2</sub>) and oxygen.<ref name=":1">{{Cite journal|last1=Wu|first1=Ming L.|last2=Ettwig|first2=Katharina F.|last3=Jetten|first3=Mike S. M.|last4=Strous|first4=Marc|last5=Keltjens|first5=Jan T.|last6=Niftrik|first6=Laura van|date=2011-02-01|title=A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'|url=https://portlandpress.com/biochemsoctrans/article-abstract/39/1/243/84969/A-new-intra-aerobic-metabolism-in-the-nitrite?redirectedFrom=fulltext|journal=Biochemical Society Transactions|language=en|volume=39|issue=1|pages=243–248|doi=10.1042/BST0390243|pmid=21265781|issn=0300-5127}}</ref>


== Enrichment ==
== Enrichment ==
Line 32: Line 32:
== Environmental significance ==
== Environmental significance ==


''Ca. "M. oxyfera"'' has been identified in several environments including rice paddy soil in China,<ref>{{Cite journal|last1=He|first1=Zhanfei|last2=Cai|first2=Chaoyang|last3=Wang|first3=Jiaqi|last4=Xu|first4=Xinhua|last5=Zheng|first5=Ping|last6=Jetten|first6=Mike S. M.|last7=Hu|first7=Baolan|date=October 2016|title=A novel denitrifying methanotroph of the NC10 phylum and its microcolony|url= |journal=Scientific Reports|language=en|volume=6|issue=1|pages=32241|doi=10.1038/srep32241|issn=2045-2322|pmc=5007514|pmid=27582299}}</ref> multiple river and lake sediments,<ref name=":3">{{Cite journal|last1=Shen|first1=Li-Dong|last2=He|first2=Zhan-Fei|last3=Zhu|first3=Qun|last4=Chen|first4=Dong-Qing|last5=Lou|first5=Li-Ping|last6=Xu|first6=Xiang-Yang|last7=Zheng|first7=Ping|last8=Hu|first8=Bao-Lan|date=2012|title=Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process|url=http://journal.frontiersin.org/article/10.3389/fmicb.2012.00269/abstract|journal=Frontiers in Microbiology|volume=3|page=269|doi=10.3389/fmicb.2012.00269|issn=1664-302X|pmc=3408237|pmid=22905032}}</ref> and wastewater sludge in The Netherlands.<ref>{{Cite journal|last1=Luesken|first1=Francisca A.|last2=van Alen|first2=Theo A.|last3=van der Biezen|first3=Erwin|last4=Frijters|first4=Carla|last5=Toonen|first5=Ger|last6=Kampman|first6=Christel|last7=Hendrickx|first7=Tim L. G.|last8=Zeeman|first8=Grietje|last9=Temmink|first9=Hardy|last10=Strous|first10=Marc|last11=Op den Camp|first11=Huub J. M.|date=November 2011|title=Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge|url= |journal=Applied Microbiology and Biotechnology|language=en|volume=92|issue=4|pages=845–854|doi=10.1007/s00253-011-3361-9|issn=0175-7598|pmc=3198195|pmid=21667086}}</ref> ''Ca. "M. oxyfera"'' is predicted to inhabit environments with high concentrations of nitrogen and methane, near boundaries that separate oxic and anoxic zones. It is suggested that ''Ca. "M. oxyfera"'' and similar organisms contribute to the global carbon and nitrogen cycles. These organisms may also play a role in reducing the nutrient loads within freshwater ecosystems that have been contaminated with fertilizers.<ref name=":3" />
''Ca. "M. oxyfera"'' has been identified in several environments including rice paddy soil in China,<ref>{{Cite journal|last1=He|first1=Zhanfei|last2=Cai|first2=Chaoyang|last3=Wang|first3=Jiaqi|last4=Xu|first4=Xinhua|last5=Zheng|first5=Ping|last6=Jetten|first6=Mike S. M.|last7=Hu|first7=Baolan|date=October 2016|title=A novel denitrifying methanotroph of the NC10 phylum and its microcolony|url= |journal=Scientific Reports|language=en|volume=6|issue=1|pages=32241|doi=10.1038/srep32241|issn=2045-2322|pmc=5007514|pmid=27582299|bibcode=2016NatSR...632241H}}</ref> multiple river and lake sediments,<ref name=":3">{{Cite journal|last1=Shen|first1=Li-Dong|last2=He|first2=Zhan-Fei|last3=Zhu|first3=Qun|last4=Chen|first4=Dong-Qing|last5=Lou|first5=Li-Ping|last6=Xu|first6=Xiang-Yang|last7=Zheng|first7=Ping|last8=Hu|first8=Bao-Lan|date=2012|title=Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process|journal=Frontiers in Microbiology|volume=3|page=269|doi=10.3389/fmicb.2012.00269|issn=1664-302X|pmc=3408237|pmid=22905032|doi-access=free}}</ref> and wastewater sludge in The Netherlands.<ref>{{Cite journal|last1=Luesken|first1=Francisca A.|last2=van Alen|first2=Theo A.|last3=van der Biezen|first3=Erwin|last4=Frijters|first4=Carla|last5=Toonen|first5=Ger|last6=Kampman|first6=Christel|last7=Hendrickx|first7=Tim L. G.|last8=Zeeman|first8=Grietje|last9=Temmink|first9=Hardy|last10=Strous|first10=Marc|last11=Op den Camp|first11=Huub J. M.|date=November 2011|title=Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge|url= |journal=Applied Microbiology and Biotechnology|language=en|volume=92|issue=4|pages=845–854|doi=10.1007/s00253-011-3361-9|issn=0175-7598|pmc=3198195|pmid=21667086}}</ref> ''Ca. "M. oxyfera"'' is predicted to inhabit environments with high concentrations of nitrogen and methane, near boundaries that separate oxic and anoxic zones. It is suggested that ''Ca. "M. oxyfera"'' and similar organisms contribute to the global carbon and nitrogen cycles. These organisms may also play a role in reducing the nutrient loads within freshwater ecosystems that have been contaminated with fertilizers.<ref name=":3" />


== References ==
== References ==

Revision as of 17:07, 11 August 2021

Methylomirabilis oxyfera
Methylomirabilis sp.. Scale bar; 200 nm.[1]
Scientific classification
Kingdom:
Phylum:
Order:
"Methylomirabilales"[2]
Genus:
Methylomirabilis
Species:
M. oxyfera

Candidatus "Methylomirabilis oxyfera" is a candidate species of Gram-negative bacteria belonging to the NC10 phylum, characterized for its capacity to couple anaerobic methane oxidation with nitrite reduction in anoxic environments.[3][4] To acquire oxygen for methane oxidation, M. oxyfera utilizes an intra-aerobic pathway through the reduction of nitrite (NO2) to dinitrogen (N2) and oxygen.[5]

Enrichment

Enriched Ca. "M. oxyfera" cells have been identified as primarily having a unique polygonal cell shape through the use of electron microscopy techniques. Unlike other methanotrophic proteobacteria, Ca. "M. oxyfera" cells lack intracytoplasmic membranes when grown under laboratory conditions.[6] The optimum growth ranges for Ca. "M. oxyfera" is between pH 7-8 and 25-30 °C.[3] Ca. "M. oxyfera"cell envelopes are Gram-negative and are generally 0.25–0.5 μm in diameter and 0.8–1.1 μm in length.[3][6]

Methane oxidation

Ca. "M. oxyfera" has the capacity to disproportionate nitric oxide into oxygen and nitrogen gas. This intermediate oxygen is then used in the oxidation of methane into carbon dioxide.[3][5]

Overall reactions

Nitrogen oxide dismutation:

2 NO2 → 2 NO → N2 + O2

Methane oxidation:

O2 + CH4 → CH3OH → CO2

Environmental significance

Ca. "M. oxyfera" has been identified in several environments including rice paddy soil in China,[7] multiple river and lake sediments,[8] and wastewater sludge in The Netherlands.[9] Ca. "M. oxyfera" is predicted to inhabit environments with high concentrations of nitrogen and methane, near boundaries that separate oxic and anoxic zones. It is suggested that Ca. "M. oxyfera" and similar organisms contribute to the global carbon and nitrogen cycles. These organisms may also play a role in reducing the nutrient loads within freshwater ecosystems that have been contaminated with fertilizers.[8]

References

  1. ^ Lavinia Gambelli, Geert Cremers, Rob Mesman, Simon Guerrero, Bas E. Dutilh, Mike S. M. Jetten, Huub J. M. Op den Camp, Laura van Niftrik: Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture. In: Frontiers in Microbiology, volume7, p1740, 8 Nov 2016, doi:10.3389/fmicb.2016.01740, ISSN 1664-302X
  2. ^ Léa Cabrol et al: Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. In: Science of The Total Environment Volume 736, 20 September 2020, 139588, doi:10.1016/j.scitotenv.2020.139588. Section 3.3
  3. ^ a b c d Ettwig, Katharina F.; Butler, Margaret K.; Le Paslier, Denis; Pelletier, Eric; Mangenot, Sophie; Kuypers, Marcel M. M.; Schreiber, Frank; Dutilh, Bas E.; Zedelius, Johannes; de Beer, Dirk; Gloerich, Jolein (March 2010). "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria". Nature. 464 (7288): 543–548. Bibcode:2010Natur.464..543E. doi:10.1038/nature08883. ISSN 1476-4687. PMID 20336137. S2CID 205220000.
  4. ^ Haroon, Mohamed F.; Hu, Shihu; Shi, Ying; Imelfort, Michael; Keller, Jurg; Hugenholtz, Philip; Yuan, Zhiguo; Tyson, Gene W. (August 2013). "Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage". Nature. 500 (7464): 567–570. Bibcode:2013Natur.500..567H. doi:10.1038/nature12375. ISSN 1476-4687. PMID 23892779. S2CID 4368118.
  5. ^ a b Wu, Ming L.; Ettwig, Katharina F.; Jetten, Mike S. M.; Strous, Marc; Keltjens, Jan T.; Niftrik, Laura van (2011-02-01). "A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'". Biochemical Society Transactions. 39 (1): 243–248. doi:10.1042/BST0390243. ISSN 0300-5127. PMID 21265781.
  6. ^ a b Wu, M. L.; van Teeseling, M. C. F.; Willems, M. J. R.; van Donselaar, E. G.; Klingl, A.; Rachel, R.; Geerts, W. J. C.; Jetten, M. S. M.; Strous, M.; van Niftrik, L. (2012-01-15). "Ultrastructure of the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera," a Novel Polygon-Shaped Bacterium". Journal of Bacteriology. 194 (2): 284–291. doi:10.1128/JB.05816-11. ISSN 0021-9193. PMC 3256638. PMID 22020652.
  7. ^ He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan (October 2016). "A novel denitrifying methanotroph of the NC10 phylum and its microcolony". Scientific Reports. 6 (1): 32241. Bibcode:2016NatSR...632241H. doi:10.1038/srep32241. ISSN 2045-2322. PMC 5007514. PMID 27582299.
  8. ^ a b Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan (2012). "Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process". Frontiers in Microbiology. 3: 269. doi:10.3389/fmicb.2012.00269. ISSN 1664-302X. PMC 3408237. PMID 22905032.
  9. ^ Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M. (November 2011). "Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge". Applied Microbiology and Biotechnology. 92 (4): 845–854. doi:10.1007/s00253-011-3361-9. ISSN 0175-7598. PMC 3198195. PMID 21667086.