Konstantina Nikita: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Ksnikita (talk | contribs)
No edit summary
Citation bot (talk | contribs)
Add: series, isbn, doi, doi-access, pmc, bibcode, editors 1-3. Upgrade ISBN10 to ISBN13. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_toolbar
Line 39: Line 39:
Nikita received the diploma in [[Electrical Engineering]] and the Ph.D. degree from the [[NTUA]], as well as the M.D. degree from the [[Medical School]], [[University of Athens]]. From 1990 to 1996, she worked as a researcher at the Institute of Communication and Computer Systems. In 1996, she joined the faculty of the School of Electrical and Computer Engineering, [[NTUA]], as an assistant professor, and since 2005, she serves as a professor at the same school.
Nikita received the diploma in [[Electrical Engineering]] and the Ph.D. degree from the [[NTUA]], as well as the M.D. degree from the [[Medical School]], [[University of Athens]]. From 1990 to 1996, she worked as a researcher at the Institute of Communication and Computer Systems. In 1996, she joined the faculty of the School of Electrical and Computer Engineering, [[NTUA]], as an assistant professor, and since 2005, she serves as a professor at the same school.


Trained as both a physician and engineer, she works to adapt technologies developed in the antennas and computer industry for healthcare innovation. Nikita leverages technologies at the intersection of [[Bioelectromagnetics|(bio-)electromagnetics]], [[sensors]], and [[materials]] to yield next-generation [[wearables]] and [[Implant (medicine)|implants]] characterized by extreme miniaturization and enhanced performance.<ref name="antennas">{{cite journal |last1=Kiourti |first1=A. |last2=Nikita |first2=K. S. |title=Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing |journal=IEEE Microwave Magazine |date=June 2014 |volume=15 |issue=4 |pages=77–91 |doi=10.1109/MMM.2014.2308765|s2cid=6514951 }}</ref><ref name="kiourti">{{cite journal |last1=Kiourti |first1=A. |last2=Nikita |first2=K. S. |title=A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables |journal=IEEE Transactions on Biomedical Engineering |date=July 2017 |volume=64 |issue=7 |pages=1422–1430 |doi=10.1109/TBME.2017.2668612|pmid=28212074 |s2cid=34814036 }}</ref> She integrates data acquired from health monitoring systems with [[Multiscale modeling|multiscale]], [[multilevel model]]ing and intelligent [[decision-making]] techniques to diagnose, study and treat a variety of diseases including [[diabetes]],<ref name="diabetes">{{cite journal |last1=Zarkogianni |first1=K. |last2=Litsa |first2=E. |last3=Mitsis |first3=K. |last4=Wu |first4=P.-Y.|last5=Kaddi |first5=C. D. |last6=Cheng |first6=C.-W. |last7=Wang |first7=M. D. |last8=Nikita |first8=K. S. |title=A Review of Emerging Technologies for the Management of Diabetes Mellitus |journal=IEEE Transactions on Biomedical Engineering |date=December 2015 |volume=62 |issue=12 |pages=2735–2749 |doi=10.1109/TBME.2015.2470521|pmid=26292334 |pmc=5859570 }}</ref> [[obesity]],<ref name="obesity">{{cite journal |last1=Valavanis |first1=I. K. |last2=Mougiakakou |first2=S. G. |last3=Grimaldi |first3=K. A. |last4=Nikita |first4=K. S. |title=A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context |journal=BMC Bioinformatics |date=8 September 2010 |volume=11 |issue=1 |page=453 |doi=10.1186/1471-2105-11-453|pmid=20825661 |pmc=2941694 |s2cid=7591416 }}</ref> [[cardiovascular disease]],<ref name="carotid_1">{{cite journal |last1=Gastiounioti |first1=A. |last2=Makrodimitris |first2=S. |last3=Golemati |first3=S. |last4=Kadoglou |first4=N. |last5=Liapis |first5=C. |last6=Nikita |first6=K. S. |title=A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall |journal=IEEE Journal of Biomedical and Health Informatics |date=2014 |volume=19 |issue=3 |pages=1137–45 |doi=10.1109/JBHI.2014.2329604|pmid=24951709 |s2cid=5924749 |doi-access=free }}</ref> [[cancer]],<ref name="cancer_1">{{cite journal |last1=Kouloulias |first1=V. E. |last2=Nikita |first2=K. S. |last3=Kouvaris |first3=J. R. |last4=Uzunoglu |first4=N. K. |last5=Golematis |first5=V. C. |last6=Papavasiliou |first6=C. G. |last7=Vlahos |first7=L. J. |title=Surgery Combined with Intraoperative Chemo-hyperthermia and Postoperative Radiotherapy in the Management of Advanced Pancreatic Adenocarcinoma: Feasibility Aspects and Efficacy |journal=Journal of Hepato-Biliary-Pancreatic Surgery |date=December 2001 |volume=8 |issue=6 |pages=564–570 |doi=10.1007/s005340100026|pmid=11956909 }}</ref> as well as [[Neurological disorder|neurological]], [[Mental disorder|mental]] and [[Cognitive disorder|cognitive]] disorders.<ref name="michmizos_1">{{cite journal |last1=Michmizos |first1=K. P. |last2=Lindqvist |first2=B. |last3=Wong |first3=S. |last4=Hargreaves |first4=E. L. |last5=Psychas |first5=K. |last6=Mitsis |first6=G. D. |last7=Danish |first7=S. F. |last8=Nikita |first8=K. S. |title=Computational Neuromodulation : Future Challenges for Deep Brain Stimulation [Life Sciences] |journal=IEEE Signal Processing Magazine |date=March 2017 |volume=34 |issue=2 |pages=114–119 |doi=10.1109/MSP.2016.2639554|s2cid=17514877 }}</ref>
Trained as both a physician and engineer, she works to adapt technologies developed in the antennas and computer industry for healthcare innovation. Nikita leverages technologies at the intersection of [[Bioelectromagnetics|(bio-)electromagnetics]], [[sensors]], and [[materials]] to yield next-generation [[wearables]] and [[Implant (medicine)|implants]] characterized by extreme miniaturization and enhanced performance.<ref name="antennas">{{cite journal |last1=Kiourti |first1=A. |last2=Nikita |first2=K. S. |title=Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing |journal=IEEE Microwave Magazine |date=June 2014 |volume=15 |issue=4 |pages=77–91 |doi=10.1109/MMM.2014.2308765|s2cid=6514951 }}</ref><ref name="kiourti">{{cite journal |last1=Kiourti |first1=A. |last2=Nikita |first2=K. S. |title=A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables |journal=IEEE Transactions on Biomedical Engineering |date=July 2017 |volume=64 |issue=7 |pages=1422–1430 |doi=10.1109/TBME.2017.2668612|pmid=28212074 |s2cid=34814036 }}</ref> She integrates data acquired from health monitoring systems with [[Multiscale modeling|multiscale]], [[multilevel model]]ing and intelligent [[decision-making]] techniques to diagnose, study and treat a variety of diseases including [[diabetes]],<ref name="diabetes">{{cite journal |last1=Zarkogianni |first1=K. |last2=Litsa |first2=E. |last3=Mitsis |first3=K. |last4=Wu |first4=P.-Y.|last5=Kaddi |first5=C. D. |last6=Cheng |first6=C.-W. |last7=Wang |first7=M. D. |last8=Nikita |first8=K. S. |title=A Review of Emerging Technologies for the Management of Diabetes Mellitus |journal=IEEE Transactions on Biomedical Engineering |date=December 2015 |volume=62 |issue=12 |pages=2735–2749 |doi=10.1109/TBME.2015.2470521|pmid=26292334 |pmc=5859570 }}</ref> [[obesity]],<ref name="obesity">{{cite journal |last1=Valavanis |first1=I. K. |last2=Mougiakakou |first2=S. G. |last3=Grimaldi |first3=K. A. |last4=Nikita |first4=K. S. |title=A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context |journal=BMC Bioinformatics |date=8 September 2010 |volume=11 |issue=1 |page=453 |doi=10.1186/1471-2105-11-453|pmid=20825661 |pmc=2941694 |s2cid=7591416 }}</ref> [[cardiovascular disease]],<ref name="carotid_1">{{cite journal |last1=Gastiounioti |first1=A. |last2=Makrodimitris |first2=S. |last3=Golemati |first3=S. |last4=Kadoglou |first4=N. |last5=Liapis |first5=C. |last6=Nikita |first6=K. S. |title=A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall |journal=IEEE Journal of Biomedical and Health Informatics |date=2014 |volume=19 |issue=3 |pages=1137–45 |doi=10.1109/JBHI.2014.2329604|pmid=24951709 |s2cid=5924749 |doi-access=free }}</ref> [[cancer]],<ref name="cancer_1">{{cite journal |last1=Kouloulias |first1=V. E. |last2=Nikita |first2=K. S. |last3=Kouvaris |first3=J. R. |last4=Uzunoglu |first4=N. K. |last5=Golematis |first5=V. C. |last6=Papavasiliou |first6=C. G. |last7=Vlahos |first7=L. J. |title=Surgery Combined with Intraoperative Chemo-hyperthermia and Postoperative Radiotherapy in the Management of Advanced Pancreatic Adenocarcinoma: Feasibility Aspects and Efficacy |journal=Journal of Hepato-Biliary-Pancreatic Surgery |date=December 2001 |volume=8 |issue=6 |pages=564–570 |doi=10.1007/s005340100026|pmid=11956909 }}</ref> as well as [[Neurological disorder|neurological]], [[Mental disorder|mental]] and [[Cognitive disorder|cognitive]] disorders.<ref name="michmizos_1">{{cite journal |last1=Michmizos |first1=K. P. |last2=Lindqvist |first2=B. |last3=Wong |first3=S. |last4=Hargreaves |first4=E. L. |last5=Psychas |first5=K. |last6=Mitsis |first6=G. D. |last7=Danish |first7=S. F. |last8=Nikita |first8=K. S. |title=Computational Neuromodulation : Future Challenges for Deep Brain Stimulation [Life Sciences] |journal=IEEE Signal Processing Magazine |date=March 2017 |volume=34 |issue=2 |pages=114–119 |doi=10.1109/MSP.2016.2639554|bibcode=2017ISPM...34..114M |s2cid=17514877 }}</ref>


Her work refers to both [[Basic research|fundamental problems]], which require the use of sophisticated methods of theoretical [[analysis]], and to the design and construction of experimental [[prototypes]] and intelligent [[health monitoring]] systems based on theoretical results of her work.<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Uzunoglu |first2=N.K. |title=Coupling phenomena in concentric multi-applicator phased array hyperthermia systems |journal=IEEE Transactions on Microwave Theory and Techniques |date=1996 |volume=44 |issue=1 |pages=65–74 |doi=10.1109/22.481386}}</ref><ref>{{cite journal |last1=Mougiakakou |first1=S. G. |last2=Bartsocas |first2=C. S. |last3=Bozas |first3=E. |last4=Chaniotakis |first4=N. |last5=Iliopoulou |first5=D. |last6=Kouris |first6=I. |last7=Pavlopoulos |first7=S. |last8=Prountzou |first8=A. |last9=Skevofilakas |first9=M. |last10=Tsoukalis |first10=A. |last11=Varotsis |first11=K. |last12=Vazeou |first12=A. |last13=Zarkogianni |first13=K. |last14=Nikita |first14=K. S. |title=SMARTDIAB: A Communication and Information Technology Approach for the Intelligent Monitoring, Management and Follow-up of Type 1 Diabetes Patients |journal=IEEE Transactions on Information Technology in Biomedicine |date=May 2010 |volume=14 |issue=3 |pages=622–633 |doi=10.1109/TITB.2009.2039711|pmid=20123578 |s2cid=11823159 }}</ref>
Her work refers to both [[Basic research|fundamental problems]], which require the use of sophisticated methods of theoretical [[analysis]], and to the design and construction of experimental [[prototypes]] and intelligent [[health monitoring]] systems based on theoretical results of her work.<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Uzunoglu |first2=N.K. |title=Coupling phenomena in concentric multi-applicator phased array hyperthermia systems |journal=IEEE Transactions on Microwave Theory and Techniques |date=1996 |volume=44 |issue=1 |pages=65–74 |doi=10.1109/22.481386|bibcode=1996ITMTT..44...65N }}</ref><ref>{{cite journal |last1=Mougiakakou |first1=S. G. |last2=Bartsocas |first2=C. S. |last3=Bozas |first3=E. |last4=Chaniotakis |first4=N. |last5=Iliopoulou |first5=D. |last6=Kouris |first6=I. |last7=Pavlopoulos |first7=S. |last8=Prountzou |first8=A. |last9=Skevofilakas |first9=M. |last10=Tsoukalis |first10=A. |last11=Varotsis |first11=K. |last12=Vazeou |first12=A. |last13=Zarkogianni |first13=K. |last14=Nikita |first14=K. S. |title=SMARTDIAB: A Communication and Information Technology Approach for the Intelligent Monitoring, Management and Follow-up of Type 1 Diabetes Patients |journal=IEEE Transactions on Information Technology in Biomedicine |date=May 2010 |volume=14 |issue=3 |pages=622–633 |doi=10.1109/TITB.2009.2039711|pmid=20123578 |s2cid=11823159 }}</ref>


She is credited with pioneering<ref>{{cite web |title=AIMBE College of Fellows Class of 2016 |url=https://aimbe.org/college-of-fellows/cof-2018/ |language=en}}</ref><ref>{{cite web |title=EAMBES Fellow |url=https://eambes.org/Fellows/Fellow/EAMBES/View/Fid/48/Konstantina |website=eambes.org}}</ref> the modelling of complex human diseases, such as [[diabetes]]<ref name="diabetes_2">{{cite journal |last1=Zarkogianni |first1=K. |last2=Vazeou |first2=A. |last3=Mougiakakou |first3=S. G. |last4=Prountzou |first4=A. |last5=Nikita |first5=K. S. |title=An Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive Control |journal=IEEE Transactions on Biomedical Engineering |date=September 2011 |volume=58 |issue=9 |pages=2467–2477 |doi=10.1109/TBME.2011.2157823|pmid=21622071 |s2cid=14164468 }}</ref> and [[Neurodegeneration|neurodegenerative diseases]],<ref name="michmizos_2">{{cite journal |last1=Michmizos |first1=K. P. |last2=Sakas |first2=D. |last3=Nikita |first3=K. S. |title=Prediction of the Timing and the Rhythm of the Parkinsonian Subthalamic Nucleus Neural Spikes Using the Local Field Potentials |journal=IEEE Transactions on Information Technology in Biomedicine |date=March 2012 |volume=16 |issue=2 |pages=190–197 |doi=10.1109/TITB.2011.2158549|pmid=21642043 |s2cid=11537329 }}</ref> by developing personalized [[Multiscale modeling|multiscale]] models providing enhanced understanding of [[pathophysiological]] mechanisms, facilitating self-disease management and assisting therapeutic interventions.<ref name="tsirogiannis_1">{{cite journal |last1=Tsirogiannis |first1=G. L. |last2=Tagaris |first2=G. A. |last3=Sakas |first3=D. |last4=Nikita |first4=K. S. |title=A population level computational model of the basal ganglia that generates parkinsonian local field potential activity |journal=Biological Cybernetics |date=30 December 2009 |volume=102 |issue=2 |pages=155–176 |doi=10.1007/s00422-009-0360-3|pmid=20041261 |s2cid=21191927 }}</ref> <ref name="zarkogianni_2">{{cite journal |last1=Zarkogianni |first1=K. |last2=Athanasiou |first2=M. |last3=Thanopoulou |first3=A. C. |last4=Nikita |first4=K. S. |title=Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes Complication |journal=IEEE Journal of Biomedical and Health Informatics |date=September 2018 |volume=22 |issue=5 |pages=1637–1647 |doi=10.1109/JBHI.2017.2765639|pmid=29990007 |s2cid=51610845 }}</ref> She employed [[machine learning]] techniques exploiting [[medical]], [[Lifestyle (sociology)|lifestyle]], [[environmental]], and [[Genetics|genetic]] data and integrated them with existing pathophysiological knowledge and models in order to devise personalized [[Biomarker|markers]] for the early detection and assessment of an array of highly prevalent diseases.<ref>{{cite journal |last1=Mougiakakou |first1=S. G. |last2=Valavanis |first2=I. K. |last3=Nikita |first3=A. |last4=Nikita |first4=K. S. |title=Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers |journal=Artificial Intelligence in Medicine |date=September 2007 |volume=41 |issue=1 |pages=25–37 |doi=10.1016/j.artmed.2007.05.002|pmid=17624744 }}</ref><ref>{{cite journal |last1=Valavanis |first1=Ioannis K. |last2=Mougiakakou |first2=S. G. |last3=Grimaldi |first3=K. A. |last4=Nikita |first4=K. S. |title=A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context |journal=BMC Bioinformatics |date=8 September 2010 |volume=11 |issue=1 |pages=453 |doi=10.1186/1471-2105-11-453|pmid=20825661 |s2cid=7591416 |doi-access=free }}</ref><ref>{{cite journal |last1=Michmizos |first1=K. P. |last2=Frangou |first2=P. |last3=Stathis |first3=P. |last4=Sakas |first4=D. |last5=Nikita |first5=K. S. |title=Beta-Band Frequency Peaks Inside the Subthalamic Nucleus as a Biomarker for Motor Improvement After Deep Brain Stimulation in Parkinson's Disease |journal=IEEE Journal of Biomedical and Health Informatics |date=January 2015 |volume=19 |issue=1 |pages=174–180 |doi=10.1109/JBHI.2014.2344102|pmid=25095273 |s2cid=346604 }}</ref><ref>{{cite journal |last1=Zarkogianni |first1=K. |last2=Mitsis |first2=K. |last3=Litsa |first3=E. |last4=Arredondo |first4=M.-T. |last5=Ficο |first5=G. |last6=Fioravanti |first6=A. |last7=Nikita |first7=K. S. |title=Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring |journal=Medical & Biological Engineering & Computing |date=December 2015 |volume=53 |issue=12 |pages=1333–1343 |doi=10.1007/s11517-015-1320-9|pmid=26049412 |s2cid=1565191 }}</ref> By multiscale modeling of [[Atherosclerosis|carotid atherosclerosis]], Nikita and her team introduced novel low-cost biomarkers for CVD/[[stroke]] risk assessment, bridging the gap between multifaceted [[phenotypes]], incorporating [[image analysis]]-based indices, and pathophysiological mechanisms, underlying [[Atheroma|plaque]] vulnerability and rupture.<ref>{{cite journal |last1=Golemati |first1=S. |last2=Gastounioti |first2=A. |last3=Nikita |first3=K. S. |title=Toward Novel Noninvasive and Low-Cost Markers for Predicting Strokes in Asymptomatic Carotid Atherosclerosis: The Role of Ultrasound Image Analysis |journal=IEEE Transactions on Biomedical Engineering |date=March 2013 |volume=60 |issue=3 |pages=652–658 |doi=10.1109/TBME.2013.2244601|pmid=23380846 |s2cid=5653986 }}</ref>
She is credited with pioneering<ref>{{cite web |title=AIMBE College of Fellows Class of 2016 |url=https://aimbe.org/college-of-fellows/cof-2018/ |language=en}}</ref><ref>{{cite web |title=EAMBES Fellow |url=https://eambes.org/Fellows/Fellow/EAMBES/View/Fid/48/Konstantina |website=eambes.org}}</ref> the modelling of complex human diseases, such as [[diabetes]]<ref name="diabetes_2">{{cite journal |last1=Zarkogianni |first1=K. |last2=Vazeou |first2=A. |last3=Mougiakakou |first3=S. G. |last4=Prountzou |first4=A. |last5=Nikita |first5=K. S. |title=An Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive Control |journal=IEEE Transactions on Biomedical Engineering |date=September 2011 |volume=58 |issue=9 |pages=2467–2477 |doi=10.1109/TBME.2011.2157823|pmid=21622071 |s2cid=14164468 }}</ref> and [[Neurodegeneration|neurodegenerative diseases]],<ref name="michmizos_2">{{cite journal |last1=Michmizos |first1=K. P. |last2=Sakas |first2=D. |last3=Nikita |first3=K. S. |title=Prediction of the Timing and the Rhythm of the Parkinsonian Subthalamic Nucleus Neural Spikes Using the Local Field Potentials |journal=IEEE Transactions on Information Technology in Biomedicine |date=March 2012 |volume=16 |issue=2 |pages=190–197 |doi=10.1109/TITB.2011.2158549|pmid=21642043 |s2cid=11537329 }}</ref> by developing personalized [[Multiscale modeling|multiscale]] models providing enhanced understanding of [[pathophysiological]] mechanisms, facilitating self-disease management and assisting therapeutic interventions.<ref name="tsirogiannis_1">{{cite journal |last1=Tsirogiannis |first1=G. L. |last2=Tagaris |first2=G. A. |last3=Sakas |first3=D. |last4=Nikita |first4=K. S. |title=A population level computational model of the basal ganglia that generates parkinsonian local field potential activity |journal=Biological Cybernetics |date=30 December 2009 |volume=102 |issue=2 |pages=155–176 |doi=10.1007/s00422-009-0360-3|pmid=20041261 |s2cid=21191927 }}</ref> <ref name="zarkogianni_2">{{cite journal |last1=Zarkogianni |first1=K. |last2=Athanasiou |first2=M. |last3=Thanopoulou |first3=A. C. |last4=Nikita |first4=K. S. |title=Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes Complication |journal=IEEE Journal of Biomedical and Health Informatics |date=September 2018 |volume=22 |issue=5 |pages=1637–1647 |doi=10.1109/JBHI.2017.2765639|pmid=29990007 |s2cid=51610845 }}</ref> She employed [[machine learning]] techniques exploiting [[medical]], [[Lifestyle (sociology)|lifestyle]], [[environmental]], and [[Genetics|genetic]] data and integrated them with existing pathophysiological knowledge and models in order to devise personalized [[Biomarker|markers]] for the early detection and assessment of an array of highly prevalent diseases.<ref>{{cite journal |last1=Mougiakakou |first1=S. G. |last2=Valavanis |first2=I. K. |last3=Nikita |first3=A. |last4=Nikita |first4=K. S. |title=Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers |journal=Artificial Intelligence in Medicine |date=September 2007 |volume=41 |issue=1 |pages=25–37 |doi=10.1016/j.artmed.2007.05.002|pmid=17624744 }}</ref><ref>{{cite journal |last1=Valavanis |first1=Ioannis K. |last2=Mougiakakou |first2=S. G. |last3=Grimaldi |first3=K. A. |last4=Nikita |first4=K. S. |title=A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context |journal=BMC Bioinformatics |date=8 September 2010 |volume=11 |issue=1 |pages=453 |doi=10.1186/1471-2105-11-453|pmid=20825661 |pmc=2941694 |s2cid=7591416 |doi-access=free }}</ref><ref>{{cite journal |last1=Michmizos |first1=K. P. |last2=Frangou |first2=P. |last3=Stathis |first3=P. |last4=Sakas |first4=D. |last5=Nikita |first5=K. S. |title=Beta-Band Frequency Peaks Inside the Subthalamic Nucleus as a Biomarker for Motor Improvement After Deep Brain Stimulation in Parkinson's Disease |journal=IEEE Journal of Biomedical and Health Informatics |date=January 2015 |volume=19 |issue=1 |pages=174–180 |doi=10.1109/JBHI.2014.2344102|pmid=25095273 |s2cid=346604 }}</ref><ref>{{cite journal |last1=Zarkogianni |first1=K. |last2=Mitsis |first2=K. |last3=Litsa |first3=E. |last4=Arredondo |first4=M.-T. |last5=Ficο |first5=G. |last6=Fioravanti |first6=A. |last7=Nikita |first7=K. S. |title=Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring |journal=Medical & Biological Engineering & Computing |date=December 2015 |volume=53 |issue=12 |pages=1333–1343 |doi=10.1007/s11517-015-1320-9|pmid=26049412 |s2cid=1565191 }}</ref> By multiscale modeling of [[Atherosclerosis|carotid atherosclerosis]], Nikita and her team introduced novel low-cost biomarkers for CVD/[[stroke]] risk assessment, bridging the gap between multifaceted [[phenotypes]], incorporating [[image analysis]]-based indices, and pathophysiological mechanisms, underlying [[Atheroma|plaque]] vulnerability and rupture.<ref>{{cite journal |last1=Golemati |first1=S. |last2=Gastounioti |first2=A. |last3=Nikita |first3=K. S. |title=Toward Novel Noninvasive and Low-Cost Markers for Predicting Strokes in Asymptomatic Carotid Atherosclerosis: The Role of Ultrasound Image Analysis |journal=IEEE Transactions on Biomedical Engineering |date=March 2013 |volume=60 |issue=3 |pages=652–658 |doi=10.1109/TBME.2013.2244601|pmid=23380846 |s2cid=5653986 }}</ref>


Nikita and her team developed [[smart system|smart systems]], which incorporate [[Sensor|sensing]], [[computing]] and [[communication technologies]], software/hardware modeling and system architectures for the [[Monitoring and evaluation|monitoring]], treatment, [[motivation]] and [[coaching]] of patients with [[diabetes]] and other [[chronic conditions]].<ref>{{cite journal |last1=Gastounioti |first1=A. |last2=Kolias |first2=V. |last3=Golemati |first3=S. |last4=Tsiaparas |first4=N. N. |last5=Matsakou |first5=A. |last6=Stoitsis |first6=J. S. |last7=Kadoglou |first7=N. P.E. |last8=Gkekas |first8=C. |last9=Kakisis |first9=J. D. |last10=Liapis |first10=C. D. |last11=Karakitsos |first11=P. |last12=Sarafis |first12=I. |last13=Angelidis |first13=P. |last14=Nikita |first14=K. S. |title=CAROTID – A web-based platform for optimal personalized management of atherosclerotic patients |journal=Computer Methods and Programs in Biomedicine |date=April 2014 |volume=114 |issue=2 |pages=183–193 |doi=10.1016/j.cmpb.2014.02.006|pmid=24636805 }}</ref><ref>{{cite journal |last1=Cancela |first1=J. |last2=Pastorino |first2=M. |last3=Arredondo |first3=M. T. |last4=Nikita |first4=K. S. |last5=Villagra |first5=F. |last6=Pastor |first6=M. A. |title=Feasibility Study of a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson's Disease Patients |journal=Sensors |date=2014 |volume=14 |issue=3 |pages=4618–4633 |doi=10.3390/s140304618|pmid=24608005 |pmc=4003960 }}</ref><ref>{{cite journal |last1=Andreadis |first1=I. I. |last2=Spyrou |first2=G. M. |last3=Nikita |first3=K. S. |title=A CAD-x Scheme for Mammography Empowered With Topological Information From Clustered Microcalcifications' Atlases |journal=IEEE Journal of Biomedical and Health Informatics |date=January 2015 |volume=19 |issue=1 |pages=166–173 |doi=10.1109/JBHI.2014.2334491|pmid=25073178 |s2cid=14688621 }}</ref>
Nikita and her team developed [[smart system|smart systems]], which incorporate [[Sensor|sensing]], [[computing]] and [[communication technologies]], software/hardware modeling and system architectures for the [[Monitoring and evaluation|monitoring]], treatment, [[motivation]] and [[coaching]] of patients with [[diabetes]] and other [[chronic conditions]].<ref>{{cite journal |last1=Gastounioti |first1=A. |last2=Kolias |first2=V. |last3=Golemati |first3=S. |last4=Tsiaparas |first4=N. N. |last5=Matsakou |first5=A. |last6=Stoitsis |first6=J. S. |last7=Kadoglou |first7=N. P.E. |last8=Gkekas |first8=C. |last9=Kakisis |first9=J. D. |last10=Liapis |first10=C. D. |last11=Karakitsos |first11=P. |last12=Sarafis |first12=I. |last13=Angelidis |first13=P. |last14=Nikita |first14=K. S. |title=CAROTID – A web-based platform for optimal personalized management of atherosclerotic patients |journal=Computer Methods and Programs in Biomedicine |date=April 2014 |volume=114 |issue=2 |pages=183–193 |doi=10.1016/j.cmpb.2014.02.006|pmid=24636805 }}</ref><ref>{{cite journal |last1=Cancela |first1=J. |last2=Pastorino |first2=M. |last3=Arredondo |first3=M. T. |last4=Nikita |first4=K. S. |last5=Villagra |first5=F. |last6=Pastor |first6=M. A. |title=Feasibility Study of a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson's Disease Patients |journal=Sensors |date=2014 |volume=14 |issue=3 |pages=4618–4633 |doi=10.3390/s140304618|pmid=24608005 |pmc=4003960 |bibcode=2014Senso..14.4618C |doi-access=free }}</ref><ref>{{cite journal |last1=Andreadis |first1=I. I. |last2=Spyrou |first2=G. M. |last3=Nikita |first3=K. S. |title=A CAD-x Scheme for Mammography Empowered With Topological Information From Clustered Microcalcifications' Atlases |journal=IEEE Journal of Biomedical and Health Informatics |date=January 2015 |volume=19 |issue=1 |pages=166–173 |doi=10.1109/JBHI.2014.2334491|pmid=25073178 |s2cid=14688621 }}</ref>


Her early research has significantly advanced [[Mobile phone|mobile phone technology]]<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Cavagnaro |first2=M. |last3=Bernardi |first3=P. |last4=Uzunoglu |first4=N.K. |last5=Pisa |first5=S. |last6=Piuzzi |first6=E. |last7=Sahalos |first7=J.N. |last8=Krikelas |first8=G.I. |last9=Vaul |first9=J.A. |last10=Excell |first10=P.S. |last11=Cerri |first11=G. |last12=Chiarandini |first12=S. |last13=De Leo |first13=R. |last14=Russo |first14=P. |title=A study of uncertainties in modeling antenna performance and power absorption in the head of a cellular phone user |journal=IEEE Transactions on Microwave Theory and Techniques |date=2000 |volume=48 |issue=12 |pages=2676–2685 |doi=10.1109/22.899030}}</ref> and has markedly improved [[Hyperthermia therapy|hyperthermia technology]]<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Uzunoglu |first2=N.K. |title=Coupling phenomena in concentric multi-applicator phased array hyperthermia systems |journal=IEEE Transactions on Microwave Theory and Techniques |date=1996 |volume=44 |issue=1 |pages=65–74 |doi=10.1109/22.481386}}</ref> and treatment efficacy, including pioneering intra-operative treatment of [[pancreatic cancer]].<ref>{{cite journal |last1=Kouloulias |first1=V. E. |last2=Kouvaris |first2=J. R. |last3=Nikita |first3=K. S. |last4=Golematis |first4=B. C. |last5=Uzunoglu |first5=N. K. |last6=Mystakidou |first6=K. |last7=Papavasiliou |first7=C. |last8=Vlahos |first8=L. |title=Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma |journal=International Journal of Hyperthermia |date=January 2002 |volume=18 |issue=3 |pages=233–252 |doi=10.1080/02656730110108794|pmid=12028639 |s2cid=7674333 }}</ref>
Her early research has significantly advanced [[Mobile phone|mobile phone technology]]<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Cavagnaro |first2=M. |last3=Bernardi |first3=P. |last4=Uzunoglu |first4=N.K. |last5=Pisa |first5=S. |last6=Piuzzi |first6=E. |last7=Sahalos |first7=J.N. |last8=Krikelas |first8=G.I. |last9=Vaul |first9=J.A. |last10=Excell |first10=P.S. |last11=Cerri |first11=G. |last12=Chiarandini |first12=S. |last13=De Leo |first13=R. |last14=Russo |first14=P. |title=A study of uncertainties in modeling antenna performance and power absorption in the head of a cellular phone user |journal=IEEE Transactions on Microwave Theory and Techniques |date=2000 |volume=48 |issue=12 |pages=2676–2685 |doi=10.1109/22.899030|bibcode=2000ITMTT..48.2676N }}</ref> and has markedly improved [[Hyperthermia therapy|hyperthermia technology]]<ref>{{cite journal |last1=Nikita |first1=K.S. |last2=Uzunoglu |first2=N.K. |title=Coupling phenomena in concentric multi-applicator phased array hyperthermia systems |journal=IEEE Transactions on Microwave Theory and Techniques |date=1996 |volume=44 |issue=1 |pages=65–74 |doi=10.1109/22.481386|bibcode=1996ITMTT..44...65N }}</ref> and treatment efficacy, including pioneering intra-operative treatment of [[pancreatic cancer]].<ref>{{cite journal |last1=Kouloulias |first1=V. E. |last2=Kouvaris |first2=J. R. |last3=Nikita |first3=K. S. |last4=Golematis |first4=B. C. |last5=Uzunoglu |first5=N. K. |last6=Mystakidou |first6=K. |last7=Papavasiliou |first7=C. |last8=Vlahos |first8=L. |title=Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma |journal=International Journal of Hyperthermia |date=January 2002 |volume=18 |issue=3 |pages=233–252 |doi=10.1080/02656730110108794|pmid=12028639 |s2cid=7674333 }}</ref>


She has been the technical manager of numerous [[Europe|European]] and [[Greece|National]] R&D projects on fundamental research and practical applications. She is the [[Editor-in-Chief]] of the IEEE Open Journal of Antennas and Propagation. She has been Chair of the program/organizing committee of and has served as keynote speaker at several international conferences and symposia. She is a Fellow of the [[Institute of Electrical and Electronics Engineers|Institute of Electrical and Electronics Engineers (IEEE)]], a Founding Fellow of the European Association of Medical and Biological Engineering and Science (EAMBES), a Fellow of the [[American Institute for Medical and Biological Engineering|American Institute of Medical and Biological Engineering (AIMBE)]]. She serves as chair of the LS7 Consolidator Grant Panel of the [[European Research Council|European Research Council (ERC)]], for granting investigator-driven frontier research in the domain of life sciences. She has been a member of the Board of Directors of the Atomic Energy Commission, the Hellenic National Academic Recognition and Information Center, the Hellenic National Council of Research and Technology and the Hellenic National Ethics Committee. She is a member of the [[IEEE Engineering in Medicine and Biology Society|IEEE-EMBS]] Technical Committee on [[Health informatics|Biomedical and Health Informatics]] (TC BHI), Chair of the [[IEEE]] Greece Section and Deputy Dean of the School of Electrical and Computer Engineering of the [[NTUA]]. She is the author of the “Handbook of Biomedical Telemetry” and of more than 180 journal publications, 350 conference proceedings papers and three [[patents]].<ref>{{cite web |title=Implantable antenna for physiological monitoring or stimulation of tissue - Google Patents |url=https://patents.google.com/patent/US20180200526A1/en?inventor=konstantina+nikita&oq=konstantina+nikita |language=en |date=16 January 2018}}</ref><ref>{{cite web |title=Title Details |url=http://www.obi.gr/obi/Default.aspx?tabid=127&idappli=X176722 |website=www.obi.gr}}</ref>
She has been the technical manager of numerous [[Europe|European]] and [[Greece|National]] R&D projects on fundamental research and practical applications. She is the [[Editor-in-Chief]] of the IEEE Open Journal of Antennas and Propagation. She has been Chair of the program/organizing committee of and has served as keynote speaker at several international conferences and symposia. She is a Fellow of the [[Institute of Electrical and Electronics Engineers|Institute of Electrical and Electronics Engineers (IEEE)]], a Founding Fellow of the European Association of Medical and Biological Engineering and Science (EAMBES), a Fellow of the [[American Institute for Medical and Biological Engineering|American Institute of Medical and Biological Engineering (AIMBE)]]. She serves as chair of the LS7 Consolidator Grant Panel of the [[European Research Council|European Research Council (ERC)]], for granting investigator-driven frontier research in the domain of life sciences. She has been a member of the Board of Directors of the Atomic Energy Commission, the Hellenic National Academic Recognition and Information Center, the Hellenic National Council of Research and Technology and the Hellenic National Ethics Committee. She is a member of the [[IEEE Engineering in Medicine and Biology Society|IEEE-EMBS]] Technical Committee on [[Health informatics|Biomedical and Health Informatics]] (TC BHI), Chair of the [[IEEE]] Greece Section and Deputy Dean of the School of Electrical and Computer Engineering of the [[NTUA]]. She is the author of the “Handbook of Biomedical Telemetry” and of more than 180 journal publications, 350 conference proceedings papers and three [[patents]].<ref>{{cite web |title=Implantable antenna for physiological monitoring or stimulation of tissue - Google Patents |url=https://patents.google.com/patent/US20180200526A1/en?inventor=konstantina+nikita&oq=konstantina+nikita |language=en |date=16 January 2018}}</ref><ref>{{cite web |title=Title Details |url=http://www.obi.gr/obi/Default.aspx?tabid=127&idappli=X176722 |website=www.obi.gr}}</ref>
Line 53: Line 53:
==Books==
==Books==
* {{cite book |last1=Nikita |first1=Konstantina S. |title=Handbook of Biomedical Telemetry |date=2014 |publisher=Wiley-IEEE Press|url=https://www.wiley.com/en-us/Handbook+of+Biomedical+Telemetry-p-9781118388617 |language=en-us}}
* {{cite book |last1=Nikita |first1=Konstantina S. |title=Handbook of Biomedical Telemetry |date=2014 |publisher=Wiley-IEEE Press|url=https://www.wiley.com/en-us/Handbook+of+Biomedical+Telemetry-p-9781118388617 |language=en-us}}
* {{cite book |last1=Kanatas |first1=Athanasios G. |last2=Nikita |first2=Konstantina S. |last3=Mathiopoulos |first3=Panagiotis |title=New Directions in Wireless Communications Systems: From Mobile to 5G |date=2017 |publisher=CRC Press|url=https://www.taylorfrancis.com/books/e/9781315155821}}
* {{cite book |last1=Kanatas |first1=Athanasios G. |last2=Nikita |first2=Konstantina S. |last3=Mathiopoulos |first3=Panagiotis |editor1-first=Athanasios G |editor1-last=Kanatas |editor2-first=Konstantina S |editor2-last=Nikita |editor3-first=Panagiotis |editor3-last=Mathiopoulos |title=New Directions in Wireless Communications Systems: From Mobile to 5G |date=2017 |publisher=CRC Press|doi=10.1201/9781315155821 |isbn=9781315155821 |url=https://www.taylorfrancis.com/books/e/9781315155821}}
* {{cite book |last1=Golemati |first1=Spyretta |last2=Nikita |first2=Konstantina S. |title=Cardiovascular Computing-Methodologies and Clinical Applications |date=2019 |publisher=Springer |url=https://www.springer.com/gp/book/9789811050916}}
* {{cite book |last1=Golemati |first1=Spyretta |last2=Nikita |first2=Konstantina S. |title=Cardiovascular Computing-Methodologies and Clinical Applications |series=Series in BioEngineering |date=2019 |publisher=Springer |doi=10.1007/978-981-10-5092-3 |isbn=978-981-10-5091-6 |url=https://www.springer.com/gp/book/9789811050916}}


==Edited Volumes==
==Edited Volumes==

Revision as of 12:08, 29 September 2021

Konstantina (Nantia) Nikita
CitizenshipGreek
Alma materNational Technical University of Athens (M.Eng., Ph.D.)
National and Kapodistrian University of Athens (M.D.)
Known forBioelectromagnetics, on- body and in-body devices, multiscale modelling, intelligent processing of health data
AwardsBodossakis Foundation Academic Prize (2003)
EAMBES Founding Fellow (2012)

AIMBE Fellow (2016)

IEEE Fellow (2018)
Scientific career
FieldsElectrical Engineering, medicine
InstitutionsNational Technical University of Athens
Institute of Communication and Computer Systems
University of Southern California
Academic advisorsNikolaos K. Uzunoglu

Konstantina "Nantia" Nikita is a Greek electrical and computer engineer and a professor at the School of Electrical and Computer Engineering at the National Technical University of Athens (NTUA), Greece. She is director of the Mobile Radiocommunications Lab and founder and director of the Biomedical Simulations and Imaging Lab, NTUA. Since 2015, she has been an Irene McCulloch Distinguished Adjunct Professor of Biomedical Engineering and Medicine at Keck School of Medicine and Viterbi School of Engineering, University of Southern California.

Education, career and research

Nikita received the diploma in Electrical Engineering and the Ph.D. degree from the NTUA, as well as the M.D. degree from the Medical School, University of Athens. From 1990 to 1996, she worked as a researcher at the Institute of Communication and Computer Systems. In 1996, she joined the faculty of the School of Electrical and Computer Engineering, NTUA, as an assistant professor, and since 2005, she serves as a professor at the same school.

Trained as both a physician and engineer, she works to adapt technologies developed in the antennas and computer industry for healthcare innovation. Nikita leverages technologies at the intersection of (bio-)electromagnetics, sensors, and materials to yield next-generation wearables and implants characterized by extreme miniaturization and enhanced performance.[1][2] She integrates data acquired from health monitoring systems with multiscale, multilevel modeling and intelligent decision-making techniques to diagnose, study and treat a variety of diseases including diabetes,[3] obesity,[4] cardiovascular disease,[5] cancer,[6] as well as neurological, mental and cognitive disorders.[7]

Her work refers to both fundamental problems, which require the use of sophisticated methods of theoretical analysis, and to the design and construction of experimental prototypes and intelligent health monitoring systems based on theoretical results of her work.[8][9]

She is credited with pioneering[10][11] the modelling of complex human diseases, such as diabetes[12] and neurodegenerative diseases,[13] by developing personalized multiscale models providing enhanced understanding of pathophysiological mechanisms, facilitating self-disease management and assisting therapeutic interventions.[14] [15] She employed machine learning techniques exploiting medical, lifestyle, environmental, and genetic data and integrated them with existing pathophysiological knowledge and models in order to devise personalized markers for the early detection and assessment of an array of highly prevalent diseases.[16][17][18][19] By multiscale modeling of carotid atherosclerosis, Nikita and her team introduced novel low-cost biomarkers for CVD/stroke risk assessment, bridging the gap between multifaceted phenotypes, incorporating image analysis-based indices, and pathophysiological mechanisms, underlying plaque vulnerability and rupture.[20]

Nikita and her team developed smart systems, which incorporate sensing, computing and communication technologies, software/hardware modeling and system architectures for the monitoring, treatment, motivation and coaching of patients with diabetes and other chronic conditions.[21][22][23]

Her early research has significantly advanced mobile phone technology[24] and has markedly improved hyperthermia technology[25] and treatment efficacy, including pioneering intra-operative treatment of pancreatic cancer.[26]

She has been the technical manager of numerous European and National R&D projects on fundamental research and practical applications. She is the Editor-in-Chief of the IEEE Open Journal of Antennas and Propagation. She has been Chair of the program/organizing committee of and has served as keynote speaker at several international conferences and symposia. She is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a Founding Fellow of the European Association of Medical and Biological Engineering and Science (EAMBES), a Fellow of the American Institute of Medical and Biological Engineering (AIMBE). She serves as chair of the LS7 Consolidator Grant Panel of the European Research Council (ERC), for granting investigator-driven frontier research in the domain of life sciences. She has been a member of the Board of Directors of the Atomic Energy Commission, the Hellenic National Academic Recognition and Information Center, the Hellenic National Council of Research and Technology and the Hellenic National Ethics Committee. She is a member of the IEEE-EMBS Technical Committee on Biomedical and Health Informatics (TC BHI), Chair of the IEEE Greece Section and Deputy Dean of the School of Electrical and Computer Engineering of the NTUA. She is the author of the “Handbook of Biomedical Telemetry” and of more than 180 journal publications, 350 conference proceedings papers and three patents.[27][28]

Books

  • Nikita, Konstantina S. (2014). Handbook of Biomedical Telemetry. Wiley-IEEE Press.
  • Kanatas, Athanasios G.; Nikita, Konstantina S.; Mathiopoulos, Panagiotis (2017). Kanatas, Athanasios G; Nikita, Konstantina S; Mathiopoulos, Panagiotis (eds.). New Directions in Wireless Communications Systems: From Mobile to 5G. CRC Press. doi:10.1201/9781315155821. ISBN 9781315155821.
  • Golemati, Spyretta; Nikita, Konstantina S. (2019). Cardiovascular Computing-Methodologies and Clinical Applications. Series in BioEngineering. Springer. doi:10.1007/978-981-10-5092-3. ISBN 978-981-10-5091-6.

Edited Volumes

  • Lin, James C.; Nikita, Konstantina S. (2010). Wireless Mobile Communication and Healthcare. Springer-Verlag.
  • Nikita, Konstantina S.; Lin, James C.; Fotiadis, Dimitrios I.; Arredondo Waldmeyer, Maria-Teresa (2011). Wireless Mobile Communication and Healthcare. Springer-Verlag.
  • Godara, Balwant; Nikita, Konstantina S. (2013). Wireless Mobile Communication and Healthcare: Third International Conference, MobiHealth 2012, Paris, France, November 21-23, 2012, Revised Selected Papers. Springer-Verlag.
  • Nikita, Konstantina S.; Bourbakis, Nikolaos; Lo, Benny; Fotiadis, Dimitrios I.; Hao, Yang; Kiourti, Asimina (2014). Transforming healthcare through innovations in mobile and wireless technologies. IEEE.

Awards

Konstantina Nikita is the recipient of a number of awards and honors including the following:

References

  1. ^ Kiourti, A.; Nikita, K. S. (June 2014). "Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing". IEEE Microwave Magazine. 15 (4): 77–91. doi:10.1109/MMM.2014.2308765. S2CID 6514951.
  2. ^ Kiourti, A.; Nikita, K. S. (July 2017). "A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables". IEEE Transactions on Biomedical Engineering. 64 (7): 1422–1430. doi:10.1109/TBME.2017.2668612. PMID 28212074. S2CID 34814036.
  3. ^ Zarkogianni, K.; Litsa, E.; Mitsis, K.; Wu, P.-Y.; Kaddi, C. D.; Cheng, C.-W.; Wang, M. D.; Nikita, K. S. (December 2015). "A Review of Emerging Technologies for the Management of Diabetes Mellitus". IEEE Transactions on Biomedical Engineering. 62 (12): 2735–2749. doi:10.1109/TBME.2015.2470521. PMC 5859570. PMID 26292334.
  4. ^ Valavanis, I. K.; Mougiakakou, S. G.; Grimaldi, K. A.; Nikita, K. S. (8 September 2010). "A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context". BMC Bioinformatics. 11 (1): 453. doi:10.1186/1471-2105-11-453. PMC 2941694. PMID 20825661. S2CID 7591416.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Gastiounioti, A.; Makrodimitris, S.; Golemati, S.; Kadoglou, N.; Liapis, C.; Nikita, K. S. (2014). "A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall". IEEE Journal of Biomedical and Health Informatics. 19 (3): 1137–45. doi:10.1109/JBHI.2014.2329604. PMID 24951709. S2CID 5924749.
  6. ^ Kouloulias, V. E.; Nikita, K. S.; Kouvaris, J. R.; Uzunoglu, N. K.; Golematis, V. C.; Papavasiliou, C. G.; Vlahos, L. J. (December 2001). "Surgery Combined with Intraoperative Chemo-hyperthermia and Postoperative Radiotherapy in the Management of Advanced Pancreatic Adenocarcinoma: Feasibility Aspects and Efficacy". Journal of Hepato-Biliary-Pancreatic Surgery. 8 (6): 564–570. doi:10.1007/s005340100026. PMID 11956909.
  7. ^ Michmizos, K. P.; Lindqvist, B.; Wong, S.; Hargreaves, E. L.; Psychas, K.; Mitsis, G. D.; Danish, S. F.; Nikita, K. S. (March 2017). "Computational Neuromodulation : Future Challenges for Deep Brain Stimulation [Life Sciences]". IEEE Signal Processing Magazine. 34 (2): 114–119. Bibcode:2017ISPM...34..114M. doi:10.1109/MSP.2016.2639554. S2CID 17514877.
  8. ^ Nikita, K.S.; Uzunoglu, N.K. (1996). "Coupling phenomena in concentric multi-applicator phased array hyperthermia systems". IEEE Transactions on Microwave Theory and Techniques. 44 (1): 65–74. Bibcode:1996ITMTT..44...65N. doi:10.1109/22.481386.
  9. ^ Mougiakakou, S. G.; Bartsocas, C. S.; Bozas, E.; Chaniotakis, N.; Iliopoulou, D.; Kouris, I.; Pavlopoulos, S.; Prountzou, A.; Skevofilakas, M.; Tsoukalis, A.; Varotsis, K.; Vazeou, A.; Zarkogianni, K.; Nikita, K. S. (May 2010). "SMARTDIAB: A Communication and Information Technology Approach for the Intelligent Monitoring, Management and Follow-up of Type 1 Diabetes Patients". IEEE Transactions on Information Technology in Biomedicine. 14 (3): 622–633. doi:10.1109/TITB.2009.2039711. PMID 20123578. S2CID 11823159.
  10. ^ "AIMBE College of Fellows Class of 2016".
  11. ^ "EAMBES Fellow". eambes.org.
  12. ^ Zarkogianni, K.; Vazeou, A.; Mougiakakou, S. G.; Prountzou, A.; Nikita, K. S. (September 2011). "An Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive Control". IEEE Transactions on Biomedical Engineering. 58 (9): 2467–2477. doi:10.1109/TBME.2011.2157823. PMID 21622071. S2CID 14164468.
  13. ^ Michmizos, K. P.; Sakas, D.; Nikita, K. S. (March 2012). "Prediction of the Timing and the Rhythm of the Parkinsonian Subthalamic Nucleus Neural Spikes Using the Local Field Potentials". IEEE Transactions on Information Technology in Biomedicine. 16 (2): 190–197. doi:10.1109/TITB.2011.2158549. PMID 21642043. S2CID 11537329.
  14. ^ Tsirogiannis, G. L.; Tagaris, G. A.; Sakas, D.; Nikita, K. S. (30 December 2009). "A population level computational model of the basal ganglia that generates parkinsonian local field potential activity". Biological Cybernetics. 102 (2): 155–176. doi:10.1007/s00422-009-0360-3. PMID 20041261. S2CID 21191927.
  15. ^ Zarkogianni, K.; Athanasiou, M.; Thanopoulou, A. C.; Nikita, K. S. (September 2018). "Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes Complication". IEEE Journal of Biomedical and Health Informatics. 22 (5): 1637–1647. doi:10.1109/JBHI.2017.2765639. PMID 29990007. S2CID 51610845.
  16. ^ Mougiakakou, S. G.; Valavanis, I. K.; Nikita, A.; Nikita, K. S. (September 2007). "Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers". Artificial Intelligence in Medicine. 41 (1): 25–37. doi:10.1016/j.artmed.2007.05.002. PMID 17624744.
  17. ^ Valavanis, Ioannis K.; Mougiakakou, S. G.; Grimaldi, K. A.; Nikita, K. S. (8 September 2010). "A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context". BMC Bioinformatics. 11 (1): 453. doi:10.1186/1471-2105-11-453. PMC 2941694. PMID 20825661. S2CID 7591416.
  18. ^ Michmizos, K. P.; Frangou, P.; Stathis, P.; Sakas, D.; Nikita, K. S. (January 2015). "Beta-Band Frequency Peaks Inside the Subthalamic Nucleus as a Biomarker for Motor Improvement After Deep Brain Stimulation in Parkinson's Disease". IEEE Journal of Biomedical and Health Informatics. 19 (1): 174–180. doi:10.1109/JBHI.2014.2344102. PMID 25095273. S2CID 346604.
  19. ^ Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.-T.; Ficο, G.; Fioravanti, A.; Nikita, K. S. (December 2015). "Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring". Medical & Biological Engineering & Computing. 53 (12): 1333–1343. doi:10.1007/s11517-015-1320-9. PMID 26049412. S2CID 1565191.
  20. ^ Golemati, S.; Gastounioti, A.; Nikita, K. S. (March 2013). "Toward Novel Noninvasive and Low-Cost Markers for Predicting Strokes in Asymptomatic Carotid Atherosclerosis: The Role of Ultrasound Image Analysis". IEEE Transactions on Biomedical Engineering. 60 (3): 652–658. doi:10.1109/TBME.2013.2244601. PMID 23380846. S2CID 5653986.
  21. ^ Gastounioti, A.; Kolias, V.; Golemati, S.; Tsiaparas, N. N.; Matsakou, A.; Stoitsis, J. S.; Kadoglou, N. P.E.; Gkekas, C.; Kakisis, J. D.; Liapis, C. D.; Karakitsos, P.; Sarafis, I.; Angelidis, P.; Nikita, K. S. (April 2014). "CAROTID – A web-based platform for optimal personalized management of atherosclerotic patients". Computer Methods and Programs in Biomedicine. 114 (2): 183–193. doi:10.1016/j.cmpb.2014.02.006. PMID 24636805.
  22. ^ Cancela, J.; Pastorino, M.; Arredondo, M. T.; Nikita, K. S.; Villagra, F.; Pastor, M. A. (2014). "Feasibility Study of a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson's Disease Patients". Sensors. 14 (3): 4618–4633. Bibcode:2014Senso..14.4618C. doi:10.3390/s140304618. PMC 4003960. PMID 24608005.
  23. ^ Andreadis, I. I.; Spyrou, G. M.; Nikita, K. S. (January 2015). "A CAD-x Scheme for Mammography Empowered With Topological Information From Clustered Microcalcifications' Atlases". IEEE Journal of Biomedical and Health Informatics. 19 (1): 166–173. doi:10.1109/JBHI.2014.2334491. PMID 25073178. S2CID 14688621.
  24. ^ Nikita, K.S.; Cavagnaro, M.; Bernardi, P.; Uzunoglu, N.K.; Pisa, S.; Piuzzi, E.; Sahalos, J.N.; Krikelas, G.I.; Vaul, J.A.; Excell, P.S.; Cerri, G.; Chiarandini, S.; De Leo, R.; Russo, P. (2000). "A study of uncertainties in modeling antenna performance and power absorption in the head of a cellular phone user". IEEE Transactions on Microwave Theory and Techniques. 48 (12): 2676–2685. Bibcode:2000ITMTT..48.2676N. doi:10.1109/22.899030.
  25. ^ Nikita, K.S.; Uzunoglu, N.K. (1996). "Coupling phenomena in concentric multi-applicator phased array hyperthermia systems". IEEE Transactions on Microwave Theory and Techniques. 44 (1): 65–74. Bibcode:1996ITMTT..44...65N. doi:10.1109/22.481386.
  26. ^ Kouloulias, V. E.; Kouvaris, J. R.; Nikita, K. S.; Golematis, B. C.; Uzunoglu, N. K.; Mystakidou, K.; Papavasiliou, C.; Vlahos, L. (January 2002). "Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma". International Journal of Hyperthermia. 18 (3): 233–252. doi:10.1080/02656730110108794. PMID 12028639. S2CID 7674333.
  27. ^ "Implantable antenna for physiological monitoring or stimulation of tissue - Google Patents". 16 January 2018.
  28. ^ "Title Details". www.obi.gr.
  29. ^ "EAMBES Fellow". eambes.org.
  30. ^ "AIMBE College of Fellows Class of 2016".
  31. ^ "IEEE Class of Fellows 2018". ieeeaps.org.

External links