Jump to content

Microbialite: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Typo: microbalites => microbialites
Added some references to studies about molecular diversity of microbialites, adding some other bacteria to the list of important contributors and highlightinh the notion of core microbiome
Line 15: Line 15:


== Microbes that produce microbialites ==
== Microbes that produce microbialites ==
A broad number of studies have analyzed the diversity of microorganisms living at the surface of microbialites<ref>{{Cite journal|last=Iniesto|first=Miguel|last2=Moreira|first2=David|last3=Reboul|first3=Guillaume|last4=Deschamps|first4=Philippe|last5=Benzerara|first5=Karim|last6=Bertolino|first6=Paola|last7=Saghaï|first7=Aurélien|last8=Tavera|first8=Rosaluz|last9=López‐García|first9=Purificación|date=2021-01|title=Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient|url=https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.15252|journal=Environmental Microbiology|language=en|volume=23|issue=1|pages=51–68|doi=10.1111/1462-2920.15252|issn=1462-2912}}</ref><ref>{{Cite journal|last=Couradeau|first=Estelle|last2=Benzerara|first2=Karim|last3=Moreira|first3=David|last4=Gérard|first4=Emmanuelle|last5=Kaźmierczak|first5=Józef|last6=Tavera|first6=Rosaluz|last7=López-García|first7=Purificación|date=2011-12-14|title=Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)|url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028767|journal=PLOS ONE|language=en|volume=6|issue=12|pages=e28767|doi=10.1371/journal.pone.0028767|issn=1932-6203|pmc=PMC3237500|pmid=22194908}}</ref>. Very often, this diversity is very high and includes bacteria, archaea and eukaryotes. While the phylogenetic diversity of these microbial communities is pretty well assessed using molecular biology, the identity of the organisms contributing to carbonate formation remains uncertain. Interestingly, some microorganisms seem to be present in microbialites forming in several different lakes, defining a core microbiome<ref>{{Cite journal|last=White|first=Richard Allen|last2=Power|first2=Ian M.|last3=Dipple|first3=Gregory M.|last4=Southam|first4=Gordon|last5=Suttle|first5=Curtis A.|date=2015-09-23|title=Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585152/|journal=Frontiers in Microbiology|volume=6|pages=966|doi=10.3389/fmicb.2015.00966|issn=1664-302X|pmc=4585152|pmid=26441900}}</ref><ref>{{Cite journal|last=Iniesto|first=Miguel|last2=Moreira|first2=David|last3=Reboul|first3=Guillaume|last4=Deschamps|first4=Philippe|last5=Benzerara|first5=Karim|last6=Bertolino|first6=Paola|last7=Saghaï|first7=Aurélien|last8=Tavera|first8=Rosaluz|last9=López‐García|first9=Purificación|date=2021-01|title=Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient|url=https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.15252|journal=Environmental Microbiology|language=en|volume=23|issue=1|pages=51–68|doi=10.1111/1462-2920.15252|issn=1462-2912}}</ref>. Microbes that precipitate carbonate to build microbialites are mostly [[prokaryote]]s, which include bacteria and [[archaea]]. The best known carbonate-producing bacteria are [[Cyanobacteria]] and [[Sulfate-reducing microorganisms|Sulfate-reducing bacteria]].<ref>{{Cite journal|last=Chagas|first=Anderson A.P.|last2=Webb|first2=Gregory E.|last3=Burne|first3=Robert V.|last4=Southam|first4=Gordon|date=November 2016|title=Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy|journal=Earth-Science Reviews|volume=162|pages=338–363|doi=10.1016/j.earscirev.2016.09.012|issn=0012-8252}}</ref> Additional bacteria may play a prominent role, such as bacteria performing anoxygenic photosythes<ref>{{Cite journal|last=Saghaï|first=Aurélien|last2=Zivanovic|first2=Yvan|last3=Zeyen|first3=Nina|last4=Moreira|first4=David|last5=Benzerara|first5=Karim|last6=Deschamps|first6=Philippe|last7=Bertolino|first7=Paola|last8=Ragon|first8=Marie|last9=Tavera|first9=Rosaluz|last10=López-Archilla|first10=Ana I.|last11=López-García|first11=Purificación|date=2015-08-05|title=Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites|url=http://journal.frontiersin.org/Article/10.3389/fmicb.2015.00797/abstract|journal=Frontiers in Microbiology|volume=6|doi=10.3389/fmicb.2015.00797|issn=1664-302X|pmc=PMC4525015|pmid=26300865}}</ref>is. Archaea are often [[extremophile]]s and thus live in remote environments where other organisms cannot live, such as [[Hydrothermal vent|white smokers]] at the bottom of the oceans.
Microbes that precipitate carbonate to build microbialites are mostly [[prokaryote]]s, which include bacteria and [[archaea]]. The best known carbonate-producing bacteria are [[Cyanobacteria]] and [[Sulfate-reducing microorganisms|Sulfate-reducing bacteria]].<ref>{{Cite journal|last=Chagas|first=Anderson A.P.|last2=Webb|first2=Gregory E.|last3=Burne|first3=Robert V.|last4=Southam|first4=Gordon|date=November 2016|title=Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy|journal=Earth-Science Reviews|volume=162|pages=338–363|doi=10.1016/j.earscirev.2016.09.012|issn=0012-8252}}</ref> Archaea are often [[extremophile]]s and thus live in remote environments where other organisms cannot live, such as [[Hydrothermal vent|white smokers]] at the bottom of the oceans.


[[Microorganism#Eukaryotes|Eucaryotic microbes]], instead, produce less carbonate than prokaryotes.<ref>{{Cite journal|last=Riding|first=Robert|date=2000|title=Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms|journal=Sedimentology|volume=47|issue=s1|pages=179–214|doi=10.1046/j.1365-3091.2000.00003.x|issn=1365-3091}}</ref>
[[Microorganism#Eukaryotes|Eucaryotic microbes]], instead, produce less carbonate than prokaryotes.<ref>{{Cite journal|last=Riding|first=Robert|date=2000|title=Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms|journal=Sedimentology|volume=47|issue=s1|pages=179–214|doi=10.1046/j.1365-3091.2000.00003.x|issn=1365-3091}}</ref>

Revision as of 20:06, 10 October 2021

Microbialites in Lake Salda rocks
Classification of microbialites (redrawn and simplified from Schmid, 1996[1]).
Stromatolites – laminated microbialites (Precambrian silicified stromatolite, Strelley Pool Chert, (Pilbara Craton), W. Australia)

Microbialite is a rock or benthic sedimentary deposit made of carbonate mud (particle diameter < 5 μm) that is formed with the mediation of microbes. The constituent carbonate mud is a type of automicrite, or authigenic carbonate mud, and therefore it precipitates in situ instead of being transported and deposited. Being formed in situ, a microbialite can be seen as a type of boundstone where reef builders are microbes, and precipitation of carbonate is biotically induced instead of forming tests, shells or skeletons. Bacteria can precipitate carbonate both in shallow and in deep water (except for Cyanobacteria) and so microbialites can form regardless of the sunlight.[2]

Microbialites are the foundation of ecosystems such as the Great Salt Lake with its millions of migrating birds.[3]

Microbialites were very important to the formation of Precambrian and Phanerozoic limestones in many different environments, marine and not. The best age for stromatolites was from 2800 Ma to 1000 Ma where stromatolites were the main constituents of carbonate platforms[2]

Classification

Microbialites can have three different fabrics:[2]

  • Stromatolitic: microbialite layered, laminated or agglutinated to form a stromatolite.
  • Thrombolitic: microbialite with a clotted peloidal fabric if observed with a petrographic microscope. The density of peloids is variable. At the scale of the hand sample, the rock shows a dendritic fabric, and can be named thrombolite.
  • Leiolitic: a microbialite with no layering nor clotted peloidal fabric. It is only made of a dense automicrite.

Microbes that produce microbialites

A broad number of studies have analyzed the diversity of microorganisms living at the surface of microbialites[4][5]. Very often, this diversity is very high and includes bacteria, archaea and eukaryotes. While the phylogenetic diversity of these microbial communities is pretty well assessed using molecular biology, the identity of the organisms contributing to carbonate formation remains uncertain. Interestingly, some microorganisms seem to be present in microbialites forming in several different lakes, defining a core microbiome[6][7]. Microbes that precipitate carbonate to build microbialites are mostly prokaryotes, which include bacteria and archaea. The best known carbonate-producing bacteria are Cyanobacteria and Sulfate-reducing bacteria.[8] Additional bacteria may play a prominent role, such as bacteria performing anoxygenic photosythes[9]is. Archaea are often extremophiles and thus live in remote environments where other organisms cannot live, such as white smokers at the bottom of the oceans.

Eucaryotic microbes, instead, produce less carbonate than prokaryotes.[10]

References

  1. ^ Schmid, D.U. (1996). "Mikrobolithe und Mikroinkrustierer aus dem Oberjura". Profil. 9: 101–251.
  2. ^ a b c Erik., Flügel (2010). Microfacies of carbonate rocks : analysis, interpretation and application. Munnecke, Axel. (2nd ed.). Heidelberg: Springer. ISBN 9783642037962. OCLC 663093942.
  3. ^ "Drought Negatively Impacting Great Salt Lake Microbialites and Ecosystem". Utah Geological Survey. Department of Natural Resources. Retrieved 18 July 2021.
  4. ^ Iniesto, Miguel; Moreira, David; Reboul, Guillaume; Deschamps, Philippe; Benzerara, Karim; Bertolino, Paola; Saghaï, Aurélien; Tavera, Rosaluz; López‐García, Purificación (2021-01). "Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient". Environmental Microbiology. 23 (1): 51–68. doi:10.1111/1462-2920.15252. ISSN 1462-2912. {{cite journal}}: Check date values in: |date= (help)
  5. ^ Couradeau, Estelle; Benzerara, Karim; Moreira, David; Gérard, Emmanuelle; Kaźmierczak, Józef; Tavera, Rosaluz; López-García, Purificación (2011-12-14). "Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)". PLOS ONE. 6 (12): e28767. doi:10.1371/journal.pone.0028767. ISSN 1932-6203. PMC 3237500. PMID 22194908.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  6. ^ White, Richard Allen; Power, Ian M.; Dipple, Gregory M.; Southam, Gordon; Suttle, Curtis A. (2015-09-23). "Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential". Frontiers in Microbiology. 6: 966. doi:10.3389/fmicb.2015.00966. ISSN 1664-302X. PMC 4585152. PMID 26441900.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Iniesto, Miguel; Moreira, David; Reboul, Guillaume; Deschamps, Philippe; Benzerara, Karim; Bertolino, Paola; Saghaï, Aurélien; Tavera, Rosaluz; López‐García, Purificación (2021-01). "Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient". Environmental Microbiology. 23 (1): 51–68. doi:10.1111/1462-2920.15252. ISSN 1462-2912. {{cite journal}}: Check date values in: |date= (help)
  8. ^ Chagas, Anderson A.P.; Webb, Gregory E.; Burne, Robert V.; Southam, Gordon (November 2016). "Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy". Earth-Science Reviews. 162: 338–363. doi:10.1016/j.earscirev.2016.09.012. ISSN 0012-8252.
  9. ^ Saghaï, Aurélien; Zivanovic, Yvan; Zeyen, Nina; Moreira, David; Benzerara, Karim; Deschamps, Philippe; Bertolino, Paola; Ragon, Marie; Tavera, Rosaluz; López-Archilla, Ana I.; López-García, Purificación (2015-08-05). "Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites". Frontiers in Microbiology. 6. doi:10.3389/fmicb.2015.00797. ISSN 1664-302X. PMC 4525015. PMID 26300865.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  10. ^ Riding, Robert (2000). "Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms". Sedimentology. 47 (s1): 179–214. doi:10.1046/j.1365-3091.2000.00003.x. ISSN 1365-3091.