Jump to content

David L. Andrews: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
C230057 (talk | contribs)
No edit summary
C230057 (talk | contribs)
No edit summary
Line 26: Line 26:
'''David Leslie Andrews''', {{post-nominals|country=GBR|size=100%|sep=,|FRSC}}, {{post-nominals|country=GBR|size=100%|sep=,|FInstP}} (15 October 1952) is a British scientist appointed as Professor of [[Chemical Physics]] at the [[University of East Anglia]], where he was the Head of Chemical Sciences and Physics, from 1996 to 1999.<ref name="profile">[https://research-portal.uea.ac.uk/en/persons/david-andrews UEA profile of David Andrews]</ref>
'''David Leslie Andrews''', {{post-nominals|country=GBR|size=100%|sep=,|FRSC}}, {{post-nominals|country=GBR|size=100%|sep=,|FInstP}} (15 October 1952) is a British scientist appointed as Professor of [[Chemical Physics]] at the [[University of East Anglia]], where he was the Head of Chemical Sciences and Physics, from 1996 to 1999.<ref name="profile">[https://research-portal.uea.ac.uk/en/persons/david-andrews UEA profile of David Andrews]</ref>


Andrews and his research group are known for wide-ranging theory work on [[Optics | optical phenomena]], developing [[Quantum electrodynamics | quantum electrodynamical theory]]<ref name="refA1">{{Cite journal | doi = 10.1080/01442358909353233 | title = Molecular quantum electrodynamics in chemical physics| journal = Int. Rev. Phys. Chem. | volume = 8| pages = 339-383 | year = 1989| last1 = Andrews | first1 = D.L. | last2 = Craig | first2 = D.P. | last3 = Thirunamachandran | first3 = T. | url=https://www.tandfonline.com/doi/abs/10.1080/01442358909353233 }}</ref><ref name="refA2">{{Cite journal | doi = 10.1103/PhysRevB.49.8751 | title = Quantum electrodynamics of resonant energy transfer in condensed matter | journal = Phys. Rev. B | volume = 49 | pages = 8751-8763 | year = 1994 | last2 = Andrews | first2 = D.L. | last1 = Juzeliūnas | first1 = G. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.49.8751 }}</ref><ref name="refA3">{{Cite journal | doi = 10.1088/1464-4266/4/2/370 | title = A quantum electrodynamics framework for the nonlinear optics of twisted beams | journal = J. Opt. B: Quantum Semiclass. Opt. | volume = 4 | pages = S66-S72 | year = 2002 | last2 = Andrews | first2 = D.L. | last1 = Dávila Romero | first1 = L.C. | last3 = Babiker | first3 = M. | url=https://iopscience.iop.org/article/10.1088/1464-4266/4/2/370 }}</ref><ref name="refA4">{{Cite journal | doi = 10.1063/1.5018399 | title = Perspective: Quantum Hamiltonians for optical interactions | journal = J. Chem. Phys. | volume = 148 | pages = 040901 | year = 2018 | last1 = Andrews | first1 = D.L. | last2 = Jones | first2 = G.A. | last4 = Woolley | first4 = R.G. | last3 = Salam | first3 = A. | url=https://aip.scitation.org/doi/10.1063/1.5018399 | doi-access = free }}</ref> and [[Molecular symmetry | symmetry principles]]<ref name="refB1">{{Cite journal | doi = 10.1016/0584-8539(90)80004-I | title = Symmetry characterisation in molecular multiphoton spectroscopy | journal = Spectrochim. Acta Part A | volume = 46 | pages = 871-885 | year = 1990 | last1 = Andrews | first1 = D.L. | url=https://www.sciencedirect.com/science/article/abs/pii/058485399080004I }}</ref><ref name="refB2">{{Cite journal | doi = 10.1088/2040-8986/aaaa56 | title = Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables | journal = J. Opt. | volume = 20 | pages = 033003 | year = 2018 | last1 = Andrews | first1 = D.L. | url=https://iopscience.iop.org/article/10.1088/2040-8986/aaaa56 | doi-access = free }}</ref><ref name="refB3">{{Cite journal | doi = 10.3390/sym10070298 | title = Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics | journal = Symmetry | volume = 10 | pages = 298 | year = 2018 | last1 = Andrews | first1 = D.L. | url=https://www.mdpi.com/2073-8994/10/7/298 | doi-access = free }}</ref> for numerous applications including [[fluorescence]],<ref name="refC1">{{Cite journal | doi = 10.1103/PhysRevA.81.013424 | title = All-optical control of molecular fluorescence | journal = Phys. Rev. A | volume = 81 | pages = 013424 | year = 2010 | last2 = Andrews | first2 = D.L. | last1 = Bradshaw | first1 = D.S. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.013424 }}</ref><ref name="refC2">{{Cite journal | doi = 10.1063/1.3556537 | title = A molecular theory for two-photon and three-photon fluorescence polarization | journal = J. Chem. Phys. | volume = 134 | pages = 094503 | year = 2011 | last2 = Andrews | first2 = D.L. | last1 = Leeder | first1 = J.M. | url=https://aip.scitation.org/doi/10.1063/1.3556537 }}</ref><ref name="refC3">{{Cite journal | doi = 10.1088/0143-0807/33/2/345 | title = Chirality in fluorescence and energy transfer | journal = Eur. J. Phys. | volume = 33 | pages = 345-358 | year = 2012 | last4 = Andrews | first4 = D.L. | last1 = Rice | first1 = E.M. | last2 = Bradshaw | first2 = D.S. | last3 = Saadi | first3 = K. | url=https://iopscience.iop.org/article/10.1088/0143-0807/33/2/345 }}</ref><ref name="refC4">{{Cite journal | doi = 10.1088/2050-6120/ab10f0 | title = Chirality in fluorescence and energy transfer | journal = Methods Appl. Fluoresc. | volume = 7 | pages = 032001 | year = 2019 | last1 = Andrews | first1 = D.L. | url=https://iopscience.iop.org/article/10.1088/2050-6120/ab10f0 }}</ref> and [[Optical tweezers | optical nanomanipulation]].<ref name="refD1">{{Cite journal | doi = 10.1103/PhysRevA.72.033816 | title = Optically induced forces and torques: Interactions between nanoparticles in a laser beam | journal = Phys. Rev. A | volume = 72 | pages = 033816 | year = 2005 | last1 = Bradshaw | first1 = D.S. | last2 = Andrews | first2 = D.L. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.72.033816 }}</ref><ref name="refD2">{{Cite journal | doi = 10.1103/PhysRevA.78.043805 | title = Optical binding in nanoparticle assembly: Potential energy landscapes | journal = Phys. Rev. A | volume = 78 | pages = 043805 | year = 2008 | last1 = Rodríguez | first1 = J.J. | last3 = Andrews | first3 = D.L. | last2 = Dávila Romero | first2 = L.C. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.78.043805 }}</ref><ref name="refD3">{{Cite journal | doi = 10.1088/0953-4075/43/10/102001 | title = Multiple optical trapping and binding: new routes to self-assembly | journal = J. Phys. B: At. Mol. Opt. Phys. | volume = 43 | pages = 102001 | year = 2010 | last1 = Čižmár | first1 = T. | last4 = Andrews | first4 = D.L. | last2 = Dávila Romero | first2 = L.C. | last3 = Dholakia | first3 = K. | url=https://iopscience.iop.org/article/10.1088/0953-4075/43/10/102001 }}</ref><ref name="refD4">{{Cite journal | doi = 10.1088/1361-6404/aa6050 | title = Manipulating particles with light: radiation and gradient forces | journal = Eur. J. Phys. | volume = 38 | pages = 034008 | year = 2017 | last1 = Bradshaw | first1 = D.S. | last2 = Andrews | first2 = D.L. | url=https://iopscience.iop.org/article/10.1088/1361-6404/aa6050 | doi-access = free }}</ref><ref name="refD5">{{Cite journal | doi = 10.1515/nanoph-2019-0361 | title = Optical binding of nanoparticles | journal = Nanophotonics | volume = 9 | pages = 1-17 | year = 2020 | last2 = Bradshaw | first2 = D.S. | last3 = Andrews | first3 = D.L. | last1 = Forbes | first1 = K.A. | url=https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0361/html | doi-access = free }}</ref> He is also known for pioneering work on the quantum theory of [[Förster resonance energy transfer | intermolecular energy transfer]],<ref name="refE4">{{Cite journal | doi = 10.1103/PhysRevB.72.125331 | title = Resonance energy transfer and quantum dots | journal = Phys. Rev. B | volume = 72 | pages = 125331 | year = 2005 | last2 = Andrews | first2 = D.L. | last1 = Scholes | first1 = G.D. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.125331 }}</ref><ref name="refE5">{{Cite journal | doi = 10.1063/1.2759489 | title = Resonance energy transfer: Spectral overlap, efficiency, and direction | journal = J. Chem. Phys. | volume = 127 | pages = 084509 | year = 2007 | last1 = Andrews | first1 = D.L. | last2 = Rodríguez | first2 = J.J. | url=https://aip.scitation.org/doi/abs/10.1063/1.2759489 }}</ref><ref name="refE6">{{Cite journal | doi = 10.1039/C002313M | title = On the conveyance of angular momentum in electronic energy transfer | journal = Phys. Chem. Chem. Phys. | volume = 12 | pages = 7409-7417 | year = 2010 | last1 = Andrews | first1 = D.L. | url=https://pubs.rsc.org/en/content/articlelanding/2010/cp/c002313m }}</ref><ref name="refE7">{{Cite journal | doi = 10.1103/PhysRevB.93.075151 | title = Quantum electrodynamics of resonance energy transfer in nanowire systems | journal = Phys. Rev. B | volume = 93 | pages = 075151 | year = 2016 | last3 = Andrews | first3 = D.L. | last1 = Weeraddana | first1 = D. | last2 = Premaratne | first2 = M. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.075151 }}</ref> in which Andrews developed the Unified Theory of energy transfer that accommodates both radiationless and radiative processes.<ref name="refE1">{{Cite journal | doi = 10.1016/0301-0104(89)87019-3 | title = A unified theory of radiative and radiationless molecular energy transfer | journal = Chem. Phys. | volume = 135 | pages = 195–201 | year = 1989 | last1 = Andrews | first1 = D.L. | url=https://www.sciencedirect.com/science/article/abs/pii/0301010489870193}}</ref><ref name="refE2">{{Cite journal | doi = 10.1063/1.1579677 | title = Resonance energy transfer: The unified theory revisited | journal = J. Chem. Phys. | volume = 119 | pages = 2264-2274 | year = 2003 | last4 = Andrews | first4 = D.L. | last1 = Daniels | first1 = G.J. | last2 = Jenkins | first2 = R.D. | last3 = Bradshaw | first3 = D.S. | url=https://aip.scitation.org/doi/10.1063/1.1579677 }}</ref><ref name="refE3">{{Cite journal | doi = 10.1088/0143-0807/25/6/017 | title = Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach | journal = Eur. J. Phys. | volume = 25 | pages = 845-858 | year = 2004 | last1 = Andrews | first1 = D.L. | last2 = Bradshaw | first2 = D.S. | url=https://iopscience.iop.org/article/10.1088/0143-0807/25/6/017 }}</ref> He has also made other notable contributions to [[quantum optics]] and [[nonlinear optics]],<ref>
Andrews and his research group are known for wide-ranging theory work on [[Optics | optical phenomena]], developing [[Quantum electrodynamics | quantum electrodynamical theory]]<ref name="refA1">{{Cite journal | doi = 10.1080/01442358909353233 | title = Molecular quantum electrodynamics in chemical physics| journal = Int. Rev. Phys. Chem. | volume = 8| pages = 339-383 | year = 1989| last1 = Andrews | first1 = D.L. | last2 = Craig | first2 = D.P. | last3 = Thirunamachandran | first3 = T. | url=https://www.tandfonline.com/doi/abs/10.1080/01442358909353233 }}</ref><ref name="refA2">{{Cite journal | doi = 10.1103/PhysRevB.49.8751 | title = Quantum electrodynamics of resonant energy transfer in condensed matter | journal = Phys. Rev. B | volume = 49 | pages = 8751-8763 | year = 1994 | last2 = Andrews | first2 = D.L. | last1 = Juzeliūnas | first1 = G. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.49.8751 }}</ref><ref name="refA3">{{Cite journal | doi = 10.1088/1464-4266/4/2/370 | title = A quantum electrodynamics framework for the nonlinear optics of twisted beams | journal = J. Opt. B: Quantum Semiclass. Opt. | volume = 4 | pages = S66-S72 | year = 2002 | last2 = Andrews | first2 = D.L. | last1 = Dávila Romero | first1 = L.C. | last3 = Babiker | first3 = M. | url=https://iopscience.iop.org/article/10.1088/1464-4266/4/2/370 }}</ref><ref name="refA4">{{Cite journal | doi = 10.1063/1.5018399 | title = Perspective: Quantum Hamiltonians for optical interactions | journal = J. Chem. Phys. | volume = 148 | pages = 040901 | year = 2018 | last1 = Andrews | first1 = D.L. | last2 = Jones | first2 = G.A. | last4 = Woolley | first4 = R.G. | last3 = Salam | first3 = A. | url=https://aip.scitation.org/doi/10.1063/1.5018399 | doi-access = free }}</ref> and [[Molecular symmetry | symmetry principles]]<ref name="refB1">{{Cite journal | doi = 10.1016/0584-8539(90)80004-I | title = Symmetry characterisation in molecular multiphoton spectroscopy | journal = Spectrochim. Acta Part A | volume = 46 | pages = 871-885 | year = 1990 | last1 = Andrews | first1 = D.L. | url=https://www.sciencedirect.com/science/article/abs/pii/058485399080004I }}</ref><ref name="refB2">{{Cite journal | doi = 10.1088/2040-8986/aaaa56 | title = Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables | journal = J. Opt. | volume = 20 | pages = 033003 | year = 2018 | last1 = Andrews | first1 = D.L. | url=https://iopscience.iop.org/article/10.1088/2040-8986/aaaa56 | doi-access = free }}</ref><ref name="refB3">{{Cite journal | doi = 10.3390/sym10070298 | title = Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics | journal = Symmetry | volume = 10 | pages = 298 | year = 2018 | last1 = Andrews | first1 = D.L. | url=https://www.mdpi.com/2073-8994/10/7/298 | doi-access = free }}</ref> for numerous applications including [[fluorescence]],<ref name="refC1">{{Cite journal | doi = 10.1103/PhysRevA.81.013424 | title = All-optical control of molecular fluorescence | journal = Phys. Rev. A | volume = 81 | pages = 013424 | year = 2010 | last2 = Andrews | first2 = D.L. | last1 = Bradshaw | first1 = D.S. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.013424 }}</ref><ref name="refC2">{{Cite journal | doi = 10.1063/1.3556537 | title = A molecular theory for two-photon and three-photon fluorescence polarization | journal = J. Chem. Phys. | volume = 134 | pages = 094503 | year = 2011 | last2 = Andrews | first2 = D.L. | last1 = Leeder | first1 = J.M. | url=https://aip.scitation.org/doi/10.1063/1.3556537 }}</ref><ref name="refC3">{{Cite journal | doi = 10.1088/0143-0807/33/2/345 | title = Chirality in fluorescence and energy transfer | journal = Eur. J. Phys. | volume = 33 | pages = 345-358 | year = 2012 | last4 = Andrews | first4 = D.L. | last1 = Rice | first1 = E.M. | last2 = Bradshaw | first2 = D.S. | last3 = Saadi | first3 = K. | url=https://iopscience.iop.org/article/10.1088/0143-0807/33/2/345 }}</ref><ref name="refC4">{{Cite journal | doi = 10.1088/2050-6120/ab10f0 | title = Chirality in fluorescence and energy transfer | journal = Methods Appl. Fluoresc. | volume = 7 | pages = 032001 | year = 2019 | last1 = Andrews | first1 = D.L. | url=https://iopscience.iop.org/article/10.1088/2050-6120/ab10f0 }}</ref> and [[Optical tweezers | optical nanomanipulation]].<ref name="refD1">{{Cite journal | doi = 10.1103/PhysRevA.72.033816 | title = Optically induced forces and torques: Interactions between nanoparticles in a laser beam | journal = Phys. Rev. A | volume = 72 | pages = 033816 | year = 2005 | last1 = Bradshaw | first1 = D.S. | last2 = Andrews | first2 = D.L. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.72.033816 }}</ref><ref name="refD2">{{Cite journal | doi = 10.1103/PhysRevA.78.043805 | title = Optical binding in nanoparticle assembly: Potential energy landscapes | journal = Phys. Rev. A | volume = 78 | pages = 043805 | year = 2008 | last1 = Rodríguez | first1 = J.J. | last3 = Andrews | first3 = D.L. | last2 = Dávila Romero | first2 = L.C. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.78.043805 }}</ref><ref name="refD3">{{Cite journal | doi = 10.1088/0953-4075/43/10/102001 | title = Multiple optical trapping and binding: new routes to self-assembly | journal = J. Phys. B: At. Mol. Opt. Phys. | volume = 43 | pages = 102001 | year = 2010 | last1 = Čižmár | first1 = T. | last4 = Andrews | first4 = D.L. | last2 = Dávila Romero | first2 = L.C. | last3 = Dholakia | first3 = K. | url=https://iopscience.iop.org/article/10.1088/0953-4075/43/10/102001 }}</ref><ref name="refD4">{{Cite journal | doi = 10.1088/1361-6404/aa6050 | title = Manipulating particles with light: radiation and gradient forces | journal = Eur. J. Phys. | volume = 38 | pages = 034008 | year = 2017 | last1 = Bradshaw | first1 = D.S. | last2 = Andrews | first2 = D.L. | url=https://iopscience.iop.org/article/10.1088/1361-6404/aa6050 | doi-access = free }}</ref><ref name="refD5">{{Cite journal | doi = 10.1515/nanoph-2019-0361 | title = Optical binding of nanoparticles | journal = Nanophotonics | volume = 9 | pages = 1-17 | year = 2020 | last2 = Bradshaw | first2 = D.S. | last3 = Andrews | first3 = D.L. | last1 = Forbes | first1 = K.A. | url=https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0361/html | doi-access = free }}</ref> Andrews is also known for pioneering work on the quantum theory of [[Förster resonance energy transfer | intermolecular energy transfer]],<ref name="refE4">{{Cite journal | doi = 10.1103/PhysRevB.72.125331 | title = Resonance energy transfer and quantum dots | journal = Phys. Rev. B | volume = 72 | pages = 125331 | year = 2005 | last2 = Andrews | first2 = D.L. | last1 = Scholes | first1 = G.D. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.125331 }}</ref><ref name="refE5">{{Cite journal | doi = 10.1063/1.2759489 | title = Resonance energy transfer: Spectral overlap, efficiency, and direction | journal = J. Chem. Phys. | volume = 127 | pages = 084509 | year = 2007 | last1 = Andrews | first1 = D.L. | last2 = Rodríguez | first2 = J.J. | url=https://aip.scitation.org/doi/abs/10.1063/1.2759489 }}</ref><ref name="refE6">{{Cite journal | doi = 10.1039/C002313M | title = On the conveyance of angular momentum in electronic energy transfer | journal = Phys. Chem. Chem. Phys. | volume = 12 | pages = 7409-7417 | year = 2010 | last1 = Andrews | first1 = D.L. | url=https://pubs.rsc.org/en/content/articlelanding/2010/cp/c002313m }}</ref><ref name="refE7">{{Cite journal | doi = 10.1103/PhysRevB.93.075151 | title = Quantum electrodynamics of resonance energy transfer in nanowire systems | journal = Phys. Rev. B | volume = 93 | pages = 075151 | year = 2016 | last3 = Andrews | first3 = D.L. | last1 = Weeraddana | first1 = D. | last2 = Premaratne | first2 = M. | url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.075151 }}</ref> in which he developed the Unified Theory of energy transfer that accommodates both radiationless and radiative processes.<ref name="refE1">{{Cite journal | doi = 10.1016/0301-0104(89)87019-3 | title = A unified theory of radiative and radiationless molecular energy transfer | journal = Chem. Phys. | volume = 135 | pages = 195–201 | year = 1989 | last1 = Andrews | first1 = D.L. | url=https://www.sciencedirect.com/science/article/abs/pii/0301010489870193}}</ref><ref name="refE2">{{Cite journal | doi = 10.1063/1.1579677 | title = Resonance energy transfer: The unified theory revisited | journal = J. Chem. Phys. | volume = 119 | pages = 2264-2274 | year = 2003 | last4 = Andrews | first4 = D.L. | last1 = Daniels | first1 = G.J. | last2 = Jenkins | first2 = R.D. | last3 = Bradshaw | first3 = D.S. | url=https://aip.scitation.org/doi/10.1063/1.1579677 }}</ref><ref name="refE3">{{Cite journal | doi = 10.1088/0143-0807/25/6/017 | title = Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach | journal = Eur. J. Phys. | volume = 25 | pages = 845-858 | year = 2004 | last1 = Andrews | first1 = D.L. | last2 = Bradshaw | first2 = D.S. | url=https://iopscience.iop.org/article/10.1088/0143-0807/25/6/017 }}</ref><ref name="refE8">{{Cite journal | doi = 10.3389/fphy.2019.00100 | title = Resonance energy transfer: from fundamental theory to recent applications | journal = Front. Phys. | volume = 7 | pages = 100 | year = 2019 | last1 = Jones | first1 = G.A. | last2 = Bradshaw | first2 = D.S. | url=https://www.frontiersin.org/articles/10.3389/fphy.2019.00100/full }}</ref> He has also made other notable contributions to [[quantum optics]] and [[nonlinear optics]],<ref>
{{cite journal | last1=Andrews | first1=D.L. | last2=Thirunamachandran | first2=T. | title=On three‐dimensional rotational averages | journal= J. Chem. Phys. | volume=67 | year=1977 | pages=5026–5033 | doi=10.1063/1.434725 | url=https://aip.scitation.org/doi/abs/10.1063/1.434725 | doi-access=}}</ref><ref>{{cite journal | last1 = Ohnoutek | first1 = L. | last2 = Jeong | first2 = H.-H. | last3 = Jones | first3 = R.R. | last4 = Sachs | first4 = J. | last5 = Olohan | first5 = B.J. | last6 = Rasadean | first6 = D.M. | last7 = Pantos | first7 = G.D. | last8 = Andrews | first8 = D.L. | last9 = Fischer | first9 = P. | last10 = Valev | first10 = V.K. | year = 2021 | title = Optical activity in third-harmonic Rayleigh scattering: A new route for measuring chirality | journal = Laser Photonics Rev. | volume = 15 | pages = 2100235 | doi = 10.1002/lpor.202100235 | doi-access = free }}</ref><ref>[https://www.advancedsciencenews.com/accessing-forbidden-colors-using-twisted-nanoparticles/ Accessing forbidden colors using “twisted” nanoparticles]</ref> with many studies of chiral interactions including a prediction of the [[Hyper Rayleigh Scattering Optical Activity | hyper–Rayleigh scattering]] effect,<ref name="ref10">
{{cite journal | last1=Andrews | first1=D.L. | last2=Thirunamachandran | first2=T. | title=On three‐dimensional rotational averages | journal= J. Chem. Phys. | volume=67 | year=1977 | pages=5026–5033 | doi=10.1063/1.434725 | url=https://aip.scitation.org/doi/abs/10.1063/1.434725 | doi-access=}}</ref><ref>{{cite journal | last1 = Ohnoutek | first1 = L. | last2 = Jeong | first2 = H.-H. | last3 = Jones | first3 = R.R. | last4 = Sachs | first4 = J. | last5 = Olohan | first5 = B.J. | last6 = Rasadean | first6 = D.M. | last7 = Pantos | first7 = G.D. | last8 = Andrews | first8 = D.L. | last9 = Fischer | first9 = P. | last10 = Valev | first10 = V.K. | year = 2021 | title = Optical activity in third-harmonic Rayleigh scattering: A new route for measuring chirality | journal = Laser Photonics Rev. | volume = 15 | pages = 2100235 | doi = 10.1002/lpor.202100235 | doi-access = free }}</ref><ref>[https://www.advancedsciencenews.com/accessing-forbidden-colors-using-twisted-nanoparticles/ Accessing forbidden colors using “twisted” nanoparticles]</ref> with many studies of chiral interactions including a prediction of the [[Hyper Rayleigh Scattering Optical Activity | hyper–Rayleigh scattering]] effect,<ref name="ref10">
{{cite journal | doi=10.1063/1.437535 | title=Hyper−Raman scattering by chiral molecules | journal=J. Chem. Phys. | volume=70 | page=1027 | year=1979 | last1=Andrews | first1=D.L. | last2=Thirunamachandran | first2=T.| url=https://ueaeprints.uea.ac.uk/id/eprint/56440/1/013.pdf}}</ref> while studies of [[Chirality (chemistry) | chirality]] and [[Circular dichroism | optical helicity]]<ref name="refF1">{{Cite journal | doi = 10.1103/PhysRevA.85.063810 | title = Chirality and angular momentum in optical radiation | journal = Phys. Rev. A | volume = 85 | pages = 063810 | year = 2012 | last1 = Coles | first1 = M.M. | last2 = Andrews | first2 = D.L. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.063810 }}</ref><ref name="refF2">{{Cite journal | doi = 10.1016/j.cplett.2015.02.051 | title = Signatures of material and optical chirality: Origins and measures | journal = Chem. Phys. Lett. | volume = 626 | pages = 106-110 | year = 2015 | last3 = Coles | first3 = M.M. | last4 = Andrews | first4 = D.L. | last1 = Bradshaw | first1 = D.S. | last2 = Leeder | first2 = J.M. | url=https://www.sciencedirect.com/science/article/pii/S0009261415001517 | doi-access = free }}</ref><ref name="refF3">{{Cite journal | doi = 10.1002/anie.202011745 | title = 500‐fold amplification of small molecule circularly polarized luminescence through circularly polarized FRET | journal = Angew. Chem. Int. Ed. | volume = 60 | pages = 222-227 | year = 2021 | last1 = Wade | first1 = J. | last7 = Andrews | first7 = D.L. | last2 = Brandt | first2 = J.R. | last3 = Reger | first3 = D. | last4 = Zinna | first4 = F. | last5 = Amsharov | first5 = K.Y. | last6 = Jux | first6 = N. | last8 = Fuchter | first8 = M.J. | url=https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202011745 | doi-access = free }}</ref> led to his research group’s many contributions to the theory of [[Optical vortex | optical vortices]].<ref>{{cite journal | last1 = Babiker | first1 = M. | last2 = Bennett | first2 = C.R. | last3 = Andrews | first3 = D.L. | last4 = Dávila Romero | first4 = L.C. | year = 2002| title = Orbital angular momentum exchange in the interaction of twisted light with molecules | journal = Phys. Rev. Lett. | volume = 89 | pages = 143601 | doi = 10.1103/PhysRevLett.89.143601 | url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.143601 }}</ref>
{{cite journal | doi=10.1063/1.437535 | title=Hyper−Raman scattering by chiral molecules | journal=J. Chem. Phys. | volume=70 | page=1027 | year=1979 | last1=Andrews | first1=D.L. | last2=Thirunamachandran | first2=T.| url=https://ueaeprints.uea.ac.uk/id/eprint/56440/1/013.pdf}}</ref> while studies of [[Chirality (chemistry) | chirality]] and [[Circular dichroism | optical helicity]]<ref name="refF1">{{Cite journal | doi = 10.1103/PhysRevA.85.063810 | title = Chirality and angular momentum in optical radiation | journal = Phys. Rev. A | volume = 85 | pages = 063810 | year = 2012 | last1 = Coles | first1 = M.M. | last2 = Andrews | first2 = D.L. | url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.063810 }}</ref><ref name="refF2">{{Cite journal | doi = 10.1016/j.cplett.2015.02.051 | title = Signatures of material and optical chirality: Origins and measures | journal = Chem. Phys. Lett. | volume = 626 | pages = 106-110 | year = 2015 | last3 = Coles | first3 = M.M. | last4 = Andrews | first4 = D.L. | last1 = Bradshaw | first1 = D.S. | last2 = Leeder | first2 = J.M. | url=https://www.sciencedirect.com/science/article/pii/S0009261415001517 | doi-access = free }}</ref><ref name="refF3">{{Cite journal | doi = 10.1002/anie.202011745 | title = 500‐fold amplification of small molecule circularly polarized luminescence through circularly polarized FRET | journal = Angew. Chem. Int. Ed. | volume = 60 | pages = 222-227 | year = 2021 | last1 = Wade | first1 = J. | last7 = Andrews | first7 = D.L. | last2 = Brandt | first2 = J.R. | last3 = Reger | first3 = D. | last4 = Zinna | first4 = F. | last5 = Amsharov | first5 = K.Y. | last6 = Jux | first6 = N. | last8 = Fuchter | first8 = M.J. | url=https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202011745 | doi-access = free }}</ref> led to his research group’s many contributions to the theory of [[Optical vortex | optical vortices]].<ref>{{cite journal | last1 = Babiker | first1 = M. | last2 = Bennett | first2 = C.R. | last3 = Andrews | first3 = D.L. | last4 = Dávila Romero | first4 = L.C. | year = 2002| title = Orbital angular momentum exchange in the interaction of twisted light with molecules | journal = Phys. Rev. Lett. | volume = 89 | pages = 143601 | doi = 10.1103/PhysRevLett.89.143601 | url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.143601 }}</ref>

Revision as of 11:42, 28 February 2022

David L. Andrews
Born (1952-10-15) October 15, 1952 (age 71)
NationalityUnited Kingdom
CitizenshipUnited Kingdom
Alma materUniversity College London
Known for Non-Relativistic Quantum Electrodynamics
Resonance Energy Transfer
Hyper–Rayleigh Scattering
Optical Nanomanipulation
Optical Vortices
Molecular Symmetry
Scientific career
FieldsPhysics, Chemistry
InstitutionsUniversity of East Anglia
Doctoral advisorT. Thirunamachandran

David Leslie Andrews, FRSC, FInstP (15 October 1952) is a British scientist appointed as Professor of Chemical Physics at the University of East Anglia, where he was the Head of Chemical Sciences and Physics, from 1996 to 1999.[1]

Andrews and his research group are known for wide-ranging theory work on optical phenomena, developing quantum electrodynamical theory[2][3][4][5] and symmetry principles[6][7][8] for numerous applications including fluorescence,[9][10][11][12] and optical nanomanipulation.[13][14][15][16][17] Andrews is also known for pioneering work on the quantum theory of intermolecular energy transfer,[18][19][20][21] in which he developed the Unified Theory of energy transfer that accommodates both radiationless and radiative processes.[22][23][24][25] He has also made other notable contributions to quantum optics and nonlinear optics,[26][27][28] with many studies of chiral interactions including a prediction of the hyper–Rayleigh scattering effect,[29] while studies of chirality and optical helicity[30][31][32] led to his research group’s many contributions to the theory of optical vortices.[33]

Andrews is the author of over four hundred scientific papers and technical books. He has been instrumental in launching several international conference series, including a series of International Conferences on Optical Angular Momentum. Many others are conferences run by SPIE – the global society for optics and photonics, of which he is a Fellow member and 2021 President. He is also a Fellow of the Royal Society of Chemistry, the Institute of Physics, and the Optical Society of America. In his spare time he is an active member of his local church, he paints landscapes, and he writes occasional poetry.

Education

David Andrews attended Colfe's Grammar School, Lee, London, U.K. from 1963 to 1970. He graduate (1st Class Hons) in Chemistry, from University College London in 1973. He then obtained a PhD in theoretical chemistry from the same university, in 1976.

Research

From 1976 to 1978, Andrews was an Associate Research Assistant in the Department of Mathematics and Honorary Research Associate in Department of Chemistry, in University College London. In 1978, he became Science Research Council Postdoctoral Fellow and in 1979 he joined the University of East Anglia as a Lecturer. Andrews was promoted to Senior Lecturer in 1991 and to Reader in 1994. He was appointed Professor of Chemical Physics in 1996.[1]

Awards and recognition

Works

  • Andrews, D.L.; Babiker, M. (2012). The angular momentum of light. Cambridge University Press. ISBN 9780511795213.
  • Andrews, D.L. (29 August 2011). Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Academic Press. doi:10.1016/B978-0-12-374027-4.X0001-1. ISBN 978-0-12-374027-4.

References

  1. ^ a b UEA profile of David Andrews
  2. ^ Andrews, D.L.; Craig, D.P.; Thirunamachandran, T. (1989). "Molecular quantum electrodynamics in chemical physics". Int. Rev. Phys. Chem. 8: 339–383. doi:10.1080/01442358909353233.
  3. ^ Juzeliūnas, G.; Andrews, D.L. (1994). "Quantum electrodynamics of resonant energy transfer in condensed matter". Phys. Rev. B. 49: 8751–8763. doi:10.1103/PhysRevB.49.8751.
  4. ^ Dávila Romero, L.C.; Andrews, D.L.; Babiker, M. (2002). "A quantum electrodynamics framework for the nonlinear optics of twisted beams". J. Opt. B: Quantum Semiclass. Opt. 4: S66–S72. doi:10.1088/1464-4266/4/2/370.
  5. ^ Andrews, D.L.; Jones, G.A.; Salam, A.; Woolley, R.G. (2018). "Perspective: Quantum Hamiltonians for optical interactions". J. Chem. Phys. 148: 040901. doi:10.1063/1.5018399.
  6. ^ Andrews, D.L. (1990). "Symmetry characterisation in molecular multiphoton spectroscopy". Spectrochim. Acta Part A. 46: 871–885. doi:10.1016/0584-8539(90)80004-I.
  7. ^ Andrews, D.L. (2018). "Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables". J. Opt. 20: 033003. doi:10.1088/2040-8986/aaaa56.
  8. ^ Andrews, D.L. (2018). "Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics". Symmetry. 10: 298. doi:10.3390/sym10070298.
  9. ^ Bradshaw, D.S.; Andrews, D.L. (2010). "All-optical control of molecular fluorescence". Phys. Rev. A. 81: 013424. doi:10.1103/PhysRevA.81.013424.
  10. ^ Leeder, J.M.; Andrews, D.L. (2011). "A molecular theory for two-photon and three-photon fluorescence polarization". J. Chem. Phys. 134: 094503. doi:10.1063/1.3556537.
  11. ^ Rice, E.M.; Bradshaw, D.S.; Saadi, K.; Andrews, D.L. (2012). "Chirality in fluorescence and energy transfer". Eur. J. Phys. 33: 345–358. doi:10.1088/0143-0807/33/2/345.
  12. ^ Andrews, D.L. (2019). "Chirality in fluorescence and energy transfer". Methods Appl. Fluoresc. 7: 032001. doi:10.1088/2050-6120/ab10f0.
  13. ^ Bradshaw, D.S.; Andrews, D.L. (2005). "Optically induced forces and torques: Interactions between nanoparticles in a laser beam". Phys. Rev. A. 72: 033816. doi:10.1103/PhysRevA.72.033816.
  14. ^ Rodríguez, J.J.; Dávila Romero, L.C.; Andrews, D.L. (2008). "Optical binding in nanoparticle assembly: Potential energy landscapes". Phys. Rev. A. 78: 043805. doi:10.1103/PhysRevA.78.043805.
  15. ^ Čižmár, T.; Dávila Romero, L.C.; Dholakia, K.; Andrews, D.L. (2010). "Multiple optical trapping and binding: new routes to self-assembly". J. Phys. B: At. Mol. Opt. Phys. 43: 102001. doi:10.1088/0953-4075/43/10/102001.
  16. ^ Bradshaw, D.S.; Andrews, D.L. (2017). "Manipulating particles with light: radiation and gradient forces". Eur. J. Phys. 38: 034008. doi:10.1088/1361-6404/aa6050.
  17. ^ Forbes, K.A.; Bradshaw, D.S.; Andrews, D.L. (2020). "Optical binding of nanoparticles". Nanophotonics. 9: 1–17. doi:10.1515/nanoph-2019-0361.
  18. ^ Scholes, G.D.; Andrews, D.L. (2005). "Resonance energy transfer and quantum dots". Phys. Rev. B. 72: 125331. doi:10.1103/PhysRevB.72.125331.
  19. ^ Andrews, D.L.; Rodríguez, J.J. (2007). "Resonance energy transfer: Spectral overlap, efficiency, and direction". J. Chem. Phys. 127: 084509. doi:10.1063/1.2759489.
  20. ^ Andrews, D.L. (2010). "On the conveyance of angular momentum in electronic energy transfer". Phys. Chem. Chem. Phys. 12: 7409–7417. doi:10.1039/C002313M.
  21. ^ Weeraddana, D.; Premaratne, M.; Andrews, D.L. (2016). "Quantum electrodynamics of resonance energy transfer in nanowire systems". Phys. Rev. B. 93: 075151. doi:10.1103/PhysRevB.93.075151.
  22. ^ Andrews, D.L. (1989). "A unified theory of radiative and radiationless molecular energy transfer". Chem. Phys. 135: 195–201. doi:10.1016/0301-0104(89)87019-3.
  23. ^ Daniels, G.J.; Jenkins, R.D.; Bradshaw, D.S.; Andrews, D.L. (2003). "Resonance energy transfer: The unified theory revisited". J. Chem. Phys. 119: 2264–2274. doi:10.1063/1.1579677.
  24. ^ Andrews, D.L.; Bradshaw, D.S. (2004). "Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach". Eur. J. Phys. 25: 845–858. doi:10.1088/0143-0807/25/6/017.
  25. ^ Jones, G.A.; Bradshaw, D.S. (2019). "Resonance energy transfer: from fundamental theory to recent applications". Front. Phys. 7: 100. doi:10.3389/fphy.2019.00100.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. ^ Andrews, D.L.; Thirunamachandran, T. (1977). "On three‐dimensional rotational averages". J. Chem. Phys. 67: 5026–5033. doi:10.1063/1.434725.
  27. ^ Ohnoutek, L.; Jeong, H.-H.; Jones, R.R.; Sachs, J.; Olohan, B.J.; Rasadean, D.M.; Pantos, G.D.; Andrews, D.L.; Fischer, P.; Valev, V.K. (2021). "Optical activity in third-harmonic Rayleigh scattering: A new route for measuring chirality". Laser Photonics Rev. 15: 2100235. doi:10.1002/lpor.202100235.
  28. ^ Accessing forbidden colors using “twisted” nanoparticles
  29. ^ Andrews, D.L.; Thirunamachandran, T. (1979). "Hyper−Raman scattering by chiral molecules" (PDF). J. Chem. Phys. 70: 1027. doi:10.1063/1.437535.
  30. ^ Coles, M.M.; Andrews, D.L. (2012). "Chirality and angular momentum in optical radiation". Phys. Rev. A. 85: 063810. doi:10.1103/PhysRevA.85.063810.
  31. ^ Bradshaw, D.S.; Leeder, J.M.; Coles, M.M.; Andrews, D.L. (2015). "Signatures of material and optical chirality: Origins and measures". Chem. Phys. Lett. 626: 106–110. doi:10.1016/j.cplett.2015.02.051.
  32. ^ Wade, J.; Brandt, J.R.; Reger, D.; Zinna, F.; Amsharov, K.Y.; Jux, N.; Andrews, D.L.; Fuchter, M.J. (2021). "500‐fold amplification of small molecule circularly polarized luminescence through circularly polarized FRET". Angew. Chem. Int. Ed. 60: 222–227. doi:10.1002/anie.202011745.
  33. ^ Babiker, M.; Bennett, C.R.; Andrews, D.L.; Dávila Romero, L.C. (2002). "Orbital angular momentum exchange in the interaction of twisted light with molecules". Phys. Rev. Lett. 89: 143601. doi:10.1103/PhysRevLett.89.143601.
  34. ^ a b David Andrews elected to SPIE presidential chain
  35. ^ Optica Fellows 2016
  36. ^ SPIE Profile

External links