Oyster reef: Difference between revisions
Phascolion (talk | contribs) Tag: references removed |
Phascolion (talk | contribs) Broaden geographic scope, add references |
||
Line 5: | Line 5: | ||
== Degradation of oyster reefs == |
== Degradation of oyster reefs == |
||
Oyster reefs were once common in estuaries around the world<ref>{{cite journal |last1=Beck |first1=Michael W. |title=Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management |journal=Bioscience |date=2011 |volume=61 |issue=2 |pages=107-116 |doi=10.1525/bio.2011.61.2.5 |url=https://academic.oup.com/bioscience/article-lookup/doi/10.1525/bio.2011.61.2.5}}</ref>. Within the last century there have been significant declines in the extent and condition of oyster reefs globally, driven by overharvesting of oysters for food provision and lime production, and coastal degradation. |
Oyster reefs were once common in estuaries around the world<ref name="Beck2011">{{cite journal |last1=Beck |first1=Michael W. |title=Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management |journal=Bioscience |date=2011 |volume=61 |issue=2 |pages=107-116 |doi=10.1525/bio.2011.61.2.5 |url=https://academic.oup.com/bioscience/article-lookup/doi/10.1525/bio.2011.61.2.5}}</ref>. Within the last century there have been significant declines in the extent and condition of oyster reefs globally, driven by overharvesting of oysters for food provision and lime production, and coastal degradation<ref name="Beck2011" />. |
||
''Crassostrea virginica'', the [[eastern oyster]], was a major reef builder in the Chesapeake Bay until the late 19th century. Because of [[overfishing]], [[environmental degradation]], and disease, populations of ''C. virginica'' underwent a drastic reduction in population size |
In the United States ''Crassostrea virginica'', the [[eastern oyster]], was a major reef builder in the Chesapeake Bay until the late 19th century. Because of [[overfishing]], [[environmental degradation]], and disease, populations of ''C. virginica'' underwent a drastic reduction in population size<ref name="Kirby2005">{{cite journal |last1=Kirby |first1=Michael X. |last2=Miller |first2=Henry M. |date=1 March 2005 |title=Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay |journal=Estuarine, Coastal and Shelf Science |volume=62 |issue=4 |pages=679–689 |doi=10.1016/j.ecss.2004.10.004|bibcode=2005ECSS...62..679K }}</ref>. There is an established pattern connecting human fishing practices to oyster population collapse across the globe. Besides the collapse of ''C. virginica'' reefs on the east coast of the United States, populations of the Olympia oyster, ''[[Ostrea lurida]]'', on the western coast of the United States and the [[Sydney rock oyster]], ''Saccostrea glomerata'', of eastern Australia have both been heavily impacted by harmful fishing practices<ref>{{cite journal |last1=Kirby |first1=Michael |date=2004 |title=Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins |journal=PNAS |volume=101 |issue=35 |pages=13096–13099 |doi=10.1073/pnas.0405150101 |pmc=516522 |pmid =15326294 |bibcode=2004PNAS..10113096K |doi-access=free }}</ref>. While most research has focused on temperate zones it is likely that significant declines have also been observed in tropical regions <ref name="Richardson 2022">{{cite journal |last1=Richardson |first1=Marina A. |last2=Zhang |first2=Ya |last3=Connolly |first3=Rod M. |last4=Gillies |first4=Chris L. |last5=McDougall |first5=Carmel |title=Some Like it Hot: The Ecology, Ecosystem Benefits and Restoration Potential of Oyster Reefs in Tropical Waters |journal=Frontiers in Marine Science |date=23 June 2022 |volume=9 |page=873768 |doi=10.3389/fmars.2022.873768}}</ref>. |
||
== Oyster reef ecology == |
== Oyster reef ecology == |
Revision as of 06:41, 1 July 2022
The term oyster reef refers to dense aggregations of oysters that form large colonial communities. Because oyster larvae need to settle on hard substrates, new oyster reefs may form on stone or other hard marine debris. Eventually the oyster reef will propagate by spat settling on the shells of older or nonliving oysters. The dense aggregations of oysters are often referred to as an oyster reef, oyster bed, oyster bank, oyster bottom, or oyster bar interchangeably. These terms are not well defined and often regionally restricted.
Degradation of oyster reefs
Oyster reefs were once common in estuaries around the world[1]. Within the last century there have been significant declines in the extent and condition of oyster reefs globally, driven by overharvesting of oysters for food provision and lime production, and coastal degradation[1].
In the United States Crassostrea virginica, the eastern oyster, was a major reef builder in the Chesapeake Bay until the late 19th century. Because of overfishing, environmental degradation, and disease, populations of C. virginica underwent a drastic reduction in population size[2]. There is an established pattern connecting human fishing practices to oyster population collapse across the globe. Besides the collapse of C. virginica reefs on the east coast of the United States, populations of the Olympia oyster, Ostrea lurida, on the western coast of the United States and the Sydney rock oyster, Saccostrea glomerata, of eastern Australia have both been heavily impacted by harmful fishing practices[3]. While most research has focused on temperate zones it is likely that significant declines have also been observed in tropical regions [4].
Oyster reef ecology
Natural oyster reefs are composed of living and dead oyster shells and provides important habitats for various species.[2] For example, the complex three-dimensional interstitial spaces within oyster reefs provide refugia for prey or juvenile species, which increases prey biomass and thereby enhances trophic transfer. Oyster reefs also stabilize shorelines by promoting sediment deposition and buffering wave energy, thereby allowing other habitats such as sea grass beds and marsh areas to form while simultaneously decreasing erosion of the shoreline.[5][6][7][8]
Ecosystem services
The filter feeding behavior of oysters can buffer against environmental degradation caused by human induced eutrophication of estuary systems. Oysters feed on suspended phytoplankton and other organic matter. Disruption of the filter feeding by oysters can lead to a decrease in the elimination of organic matter from the water column and increase phytoplankton abundance. This in turn may lead to seasonal anoxia, which could increase mortality for other estuary animals, such as fish.[2]
Oyster reefs can also impact the carbon sequestration and excess nutrient uptake. Oyster reefs also stabilize shorelines by promoting sediment deposition and buffering wave energy, thereby allowing other habitats such as sea grass beds and marsh areas to form while simultaneously decreasing erosion of the shoreline.[5][6][7][8]
Restoration
Oyster reef restoration has accelerated in recent decades.[9] Oyster reef restoration projects often place the sanitized shells of dead oysters, concrete, or limestone pieces on a soft bottom to encourage oyster spat settlement.[6] Restoration of intertidal Eastern oyster reefs can match natural densities of oysters and mud crabs, and recover oyster stability in about 6 years.[10] Additional benefits to restoring these habitats includes suppressing phytoplankton blooms via increasing filter feeding behavior,[11] increase nutrient sequestration and dentrification rates,[12] increase nekton biomass, and potentially increase commercial fishery value.[13] However, finding data on previously implemented restoration projects can be difficult to access, thereby hindering future restoration efforts.[14]
See also
- Rudists – extinct group of major reef-building bivalves in the Mesozoic Era
References
- ^ a b Beck, Michael W. (2011). "Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management". Bioscience. 61 (2): 107–116. doi:10.1525/bio.2011.61.2.5.
- ^ a b c Kirby, Michael X.; Miller, Henry M. (1 March 2005). "Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay". Estuarine, Coastal and Shelf Science. 62 (4): 679–689. Bibcode:2005ECSS...62..679K. doi:10.1016/j.ecss.2004.10.004.
- ^ Kirby, Michael (2004). "Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins". PNAS. 101 (35): 13096–13099. Bibcode:2004PNAS..10113096K. doi:10.1073/pnas.0405150101. PMC 516522. PMID 15326294.
- ^ Richardson, Marina A.; Zhang, Ya; Connolly, Rod M.; Gillies, Chris L.; McDougall, Carmel (23 June 2022). "Some Like it Hot: The Ecology, Ecosystem Benefits and Restoration Potential of Oyster Reefs in Tropical Waters". Frontiers in Marine Science. 9: 873768. doi:10.3389/fmars.2022.873768.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b La Peyre, M. K.; Furlong, J.; Brown, L. A.; Piazza, B. P.; Brown, K. (2014). "Oyster reef restoration in the northern Gulf of Mexico: extent, methods, and outcomes". Ocean & Coastal Management. 89: 20–28. doi:10.1016/j.ocecoaman.2013.12.002.
- ^ a b c Brown, L. A.; Furlong, J. N.; Brown, K. M.; La Pyre, M. K. (2014). "Oyster reef restoration in the northern Gulf of Mexico: effect and artificial substrate and age on nekton and benthic macroinvertebrate assemblage use". Restoration Ecology. 22 (2): 213–222. doi:10.1111/rec.12071.
- ^ a b Dillon, K. S.; Peterson, M. S.; May, C. A. (2015). "Functional equivalence of constructed and natural intertidal eastern oyster reef habitats in a northern Gulf of Mexico estuary". Marine Ecology Progress Series. 528: 187–203. Bibcode:2015MEPS..528..187D. doi:10.3354/meps11269.
- ^ a b George, L. M.; De Santiago, K.; Palmer, T. A.; Pollack, J. B. (2015). "Oyster reef restoration: effect of alternative substrates on oyster recruitment and nekton habitat use". Journal of Coastal Conservation. 19: 13–22. doi:10.1007/s11852-014-0351-y. S2CID 54732481.
- ^ Duarte, Carlos M.; Agusti, Susana; Barbier, Edward; Britten, Gregory L.; Castilla, Juan Carlos; Gattuso, Jean-Pierre; Fulweiler, Robinson W.; Hughes, Terry P.; Knowlton, Nancy; Lovelock, Catherine E.; Lotze, Heike K.; Predragovic, Milica; Poloczanska, Elvira; Roberts, Callum; Worm, Boris (1 April 2020). "Rebuilding marine life". Nature. 580: 39–51. doi:10.1038/s41586-021-03271-2. ISSN 1476-4687.
- ^ Smith, Rachel S.; Lusk, Bo; Castorani, Max C.N. (5 April 2022). "Restored oyster reefs match multiple functions of natural reefs within a decade". Conservation Letters. doi:10.1111/conl.12883.
- ^ Gedan, Keryn B.; Kellogg, Lisa; Breitburg, Denise L. (1 July 2014). "Accounting for Multiple Foundation Species in Oyster Reef Restoration Benefits". Restoration Ecology. 22 (4): 517–524. doi:10.1111/rec.12107. ISSN 1526-100X.
- ^ Kellogg, M. Lisa; Cornwell, Jeffrey C.; Owens, Michael S.; Paynter, Kennedy T. (22 April 2013). "FEATURE ARTICLE Denitrification and nutrient assimilation on a restored oyster reef". Marine Ecology Progress Series. 480: 1–19. doi:10.3354/meps10331.
- ^ Humphries, Austin T.; Peyre, Megan K. La (25 August 2015). "Oyster reef restoration supports increased nekton biomass and potential commercial fishery value". PeerJ. 3: e1111. doi:10.7717/peerj.1111. PMC 4556142. PMID 26336635.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ La Peyre, Megan; Furlong, Jessica; Brown, Laura A.; Piazza, Bryan P.; Brown, Ken (1 March 2014). "Oyster reef restoration in the northern Gulf of Mexico: Extent, methods and outcomes". Ocean & Coastal Management. 89: 20–28. doi:10.1016/j.ocecoaman.2013.12.002.