Jump to content

ICLIP: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
Updated recent references
Line 1: Line 1:
{{distinguish|text=[[Intramembrane protease]], sometimes abbreviated I-CLiP}}
{{distinguish|text=[[Intramembrane protease]], sometimes abbreviated I-CLiP}}
{{DISPLAYTITLE:iCLIP}}
{{DISPLAYTITLE:iCLIP}}
'''iCLIP'''<ref name=":0">{{Cite journal |last=König |first=Julian |last2=Zarnack |first2=Kathi |last3=Rot |first3=Gregor |last4=Curk |first4=Tomaz |last5=Kayikci |first5=Melis |last6=Zupan |first6=Blaz |last7=Turner |first7=Daniel J. |last8=Luscombe |first8=Nicholas M. |last9=Ule |first9=Jernej |date=July 2010 |title=iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution |url=https://pubmed.ncbi.nlm.nih.gov/20601959 |journal=Nature Structural & Molecular Biology |volume=17 |issue=7 |pages=909–915 |doi=10.1038/nsmb.1838 |issn=1545-9985 |pmc=3000544 |pmid=20601959}}</ref><ref>{{Cite journal |last=Haberman |first=Nejc |last2=Huppertz |first2=Ina |last3=Attig |first3=Jan |last4=König |first4=Julian |last5=Wang |first5=Zhen |last6=Hauer |first6=Christian |last7=Hentze |first7=Matthias W. |last8=Kulozik |first8=Andreas E. |last9=Le Hir |first9=Hervé |last10=Curk |first10=Tomaž |last11=Sibley |first11=Christopher R. |last12=Zarnack |first12=Kathi |last13=Ule |first13=Jernej |date=2017-01-16 |title=Insights into the design and interpretation of iCLIP experiments |url=https://pubmed.ncbi.nlm.nih.gov/28093074 |journal=Genome Biology |volume=18 |issue=1 |pages=7 |doi=10.1186/s13059-016-1130-x |issn=1474-760X |pmc=5240381 |pmid=28093074}}</ref><ref>{{cite journal |last=König |first=Julian |author2=Zarnack, Kathi |author3=Luscombe, Nicholas M. |author4=Ule, Jernej |date=18 January 2012 |title=Protein–RNA interactions: new genomic technologies and perspectives |journal=Nature Reviews Genetics |volume=13 |issue=2 |pages=77–83 |doi=10.1038/nrg3141 |pmc=4962561 |pmid=22251872}}</ref> (individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation) is a variant of the original CLIP method used for identifying protein-RNA interactions<ref>{{Cite journal |last=Ule |first=Jernej |last2=Jensen |first2=Kirk B. |last3=Ruggiu |first3=Matteo |last4=Mele |first4=Aldo |last5=Ule |first5=Aljaz |last6=Darnell |first6=Robert B. |date=2003-11-14 |title=CLIP identifies Nova-regulated RNA networks in the brain |url=https://pubmed.ncbi.nlm.nih.gov/14615540 |journal=Science (New York, N.Y.) |volume=302 |issue=5648 |pages=1212–1215 |doi=10.1126/science.1090095 |issn=1095-9203 |pmid=14615540}}</ref>, which uses [[UV light]] to covalently bind proteins and RNA molecules to identify RNA binding sites of proteins. This [[cross-link]]ing step has generally less background than standard [[RNA immunoprecipitation]] (RIP) protocols, because the covalent bond formed by UV light allows RNA to be fragmented, followed by stringent purification, and this also enables CLIP to identify the positions of protein-RNA interactions<ref name=":1">{{Cite journal |last=Hafner |first=Markus |last2=Katsantoni |first2=Maria |last3=Köster |first3=Tino |last4=Marks |first4=James |last5=Mukherjee |first5=Joyita |last6=Staiger |first6=Dorothee |last7=Ule |first7=Jernej |last8=Zavolan |first8=Mihaela |date=2021-03-04 |title=CLIP and complementary methods |url=https://www.nature.com/articles/s43586-021-00018-1 |journal=Nature Reviews Methods Primers |language=en |volume=1 |issue=1 |pages=1–23 |doi=10.1038/s43586-021-00018-1 |issn=2662-8449}}</ref>. As with all [[Cross-linking immunoprecipitation|CLIP]] methods, iCLIP allows for a very stringent purification of the linked protein-RNA complexes by stringent washing during immunoprecipitation followed by [[SDS-PAGE]] and transfer to nitrocellulose. The labelled protein-RNA complexes are then visualised for quality control, excised from nitrocellulose, and treated with proteinase to release the RNA, leaving only a few amino acids at the crosslink site of the RNA.
'''iCLIP'''<ref name=":0">{{Cite journal |last=König |first=Julian |last2=Zarnack |first2=Kathi |last3=Rot |first3=Gregor |last4=Curk |first4=Tomaz |last5=Kayikci |first5=Melis |last6=Zupan |first6=Blaz |last7=Turner |first7=Daniel J. |last8=Luscombe |first8=Nicholas M. |last9=Ule |first9=Jernej |date=July 2010 |title=iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution |url=https://pubmed.ncbi.nlm.nih.gov/20601959 |journal=Nature Structural & Molecular Biology |volume=17 |issue=7 |pages=909–915 |doi=10.1038/nsmb.1838 |issn=1545-9985 |pmc=3000544 |pmid=20601959}}</ref><ref>{{Cite journal |last=Haberman |first=Nejc |last2=Huppertz |first2=Ina |last3=Attig |first3=Jan |last4=König |first4=Julian |last5=Wang |first5=Zhen |last6=Hauer |first6=Christian |last7=Hentze |first7=Matthias W. |last8=Kulozik |first8=Andreas E. |last9=Le Hir |first9=Hervé |last10=Curk |first10=Tomaž |last11=Sibley |first11=Christopher R. |last12=Zarnack |first12=Kathi |last13=Ule |first13=Jernej |date=2017-01-16 |title=Insights into the design and interpretation of iCLIP experiments |url=https://pubmed.ncbi.nlm.nih.gov/28093074 |journal=Genome Biology |volume=18 |issue=1 |pages=7 |doi=10.1186/s13059-016-1130-x |issn=1474-760X |pmc=5240381 |pmid=28093074}}</ref><ref>{{cite journal |last=König |first=Julian |author2=Zarnack, Kathi |author3=Luscombe, Nicholas M. |author4=Ule, Jernej |date=18 January 2012 |title=Protein–RNA interactions: new genomic technologies and perspectives |journal=Nature Reviews Genetics |volume=13 |issue=2 |pages=77–83 |doi=10.1038/nrg3141 |pmc=4962561 |pmid=22251872}}</ref> (individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation) is a variant of the original CLIP method used for identifying protein-RNA interactions<ref>{{Cite journal |last=Ule |first=Jernej |last2=Jensen |first2=Kirk B. |last3=Ruggiu |first3=Matteo |last4=Mele |first4=Aldo |last5=Ule |first5=Aljaz |last6=Darnell |first6=Robert B. |date=2003-11-14 |title=CLIP identifies Nova-regulated RNA networks in the brain |url=https://pubmed.ncbi.nlm.nih.gov/14615540 |journal=Science (New York, N.Y.) |volume=302 |issue=5648 |pages=1212–1215 |doi=10.1126/science.1090095 |issn=1095-9203 |pmid=14615540}}</ref>, which uses [[UV light]] to covalently bind proteins and RNA molecules to identify RNA binding sites of proteins. This [[cross-link]]ing step has generally less background than standard [[RNA immunoprecipitation]] (RIP) protocols, because the covalent bond formed by UV light allows RNA to be fragmented, followed by stringent purification, and this also enables CLIP to identify the positions of protein-RNA interactions<ref name=":1">{{Cite journal |last=Hafner |first=Markus |last2=Katsantoni |first2=Maria |last3=Köster |first3=Tino |last4=Marks |first4=James |last5=Mukherjee |first5=Joyita |last6=Staiger |first6=Dorothee |last7=Ule |first7=Jernej |last8=Zavolan |first8=Mihaela |date=2021-03-04 |title=CLIP and complementary methods |url=https://www.nature.com/articles/s43586-021-00018-1 |journal=Nature Reviews Methods Primers |language=en |volume=1 |issue=1 |pages=1–23 |doi=10.1038/s43586-021-00018-1 |issn=2662-8449}}</ref>. As with all [[Cross-linking immunoprecipitation|CLIP]] methods, iCLIP allows for a very stringent purification of the linked protein-RNA complexes by stringent washing during immunoprecipitation followed by [[SDS-PAGE]] and transfer to nitrocellulose. The labelled protein-RNA complexes are then visualised for quality control, excised from nitrocellulose, and treated with proteinase to release the RNA, leaving only a few amino acids at the crosslink site of the RNA<ref name=":2">{{Cite journal |last=Lee |first=Flora C. Y. |last2=Ule |first2=Jernej |date=2018-02-01 |title=Advances in CLIP Technologies for Studies of Protein-RNA Interactions |url=https://pubmed.ncbi.nlm.nih.gov/29395060 |journal=Molecular Cell |volume=69 |issue=3 |pages=354–369 |doi=10.1016/j.molcel.2018.01.005 |issn=1097-4164 |pmid=29395060}}</ref>.


The RNA is then reverse transcribed, causing most cDNAs to truncate at the crosslink site, and the key innovation and unique feature in the development of iCLIP was to enable such truncated cDNAs to be PCR amplified and sequenced using a next-generation sequencing platform. Another transformative innovation of iCLIP was to add a random sequence (unique molecular identifier, [[Unique molecular identifier|UMI]]) along with experimental barcodes to the primer used for reverse transcription, which is used to barcode unique cDNAs, thus minimising any errors or quantitative biases of PCR [./Https://www.nature.com/articles/s43586-021-00018-1 amplification]<ref name=":0" /><ref name=":1" /> and therefore improves the quantification of binding events. With these improvements, iCLIP enhanced the capacity of CLIP to thoroughly amplify all types of cDNAs (rather than just those cDNAs that read through the crosslink sites), and enabled the sites of RNA-protein interactions to be quantified precisely and at high resolution by analysing the starting position of truncated cDNAs after their genomic mapping, and quantifying their UMIs with software called "[https://github.com/tomazc/iCount iCount]"<ref name=":0" /><ref name=":1" />. Alternative approaches to identify protein-RNA crosslink sites include the mutational analysis of read-through cDNAs, such as nucleotide transitions in [[PAR-CLIP]]<ref>{{Cite journal |last=Hafner |first=Markus |last2=Landthaler |first2=Markus |last3=Burger |first3=Lukas |last4=Khorshid |first4=Mohsen |last5=Hausser |first5=Jean |last6=Berninger |first6=Philipp |last7=Rothballer |first7=Andrea |last8=Ascano |first8=Manuel |last9=Jungkamp |first9=Anna-Carina |last10=Munschauer |first10=Mathias |last11=Ulrich |first11=Alexander |last12=Wardle |first12=Greg S. |last13=Dewell |first13=Scott |last14=Zavolan |first14=Mihaela |last15=Tuschl |first15=Thomas |date=2010-04-02 |title=Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP |url=https://pubmed.ncbi.nlm.nih.gov/20371350 |journal=Cell |volume=141 |issue=1 |pages=129–141 |doi=10.1016/j.cell.2010.03.009 |issn=1097-4172 |pmc=2861495 |pmid=20371350}}</ref>, or other types of errors that can be introduced by reverse transcriptase when it reads through the crosslink site in standard [[HITS-CLIP]] method with the Crosslink induced mutation site (CIMS) analysis<ref>{{cite journal|last=Zhang|first=Chaolin|author2=Darnell, Robert B|title=Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data.|journal=Nature Biotechnology|date=1 June 2011|volume=29|issue=7|pages=607–614|doi=10.1038/nbt.1873|pmid=21633356|pmc=3400429}}</ref>.
The RNA is then reverse transcribed, causing most cDNAs to truncate at the crosslink site, and the key innovation and unique feature in the development of iCLIP was to enable such truncated cDNAs to be PCR amplified and sequenced using a next-generation sequencing platform. Another transformative innovation of iCLIP was to add a random sequence (unique molecular identifier, [[Unique molecular identifier|UMI]]) along with experimental barcodes to the primer used for reverse transcription, which is used to barcode unique cDNAs, thus minimising any errors or quantitative biases of PCR [./Https://www.nature.com/articles/s43586-021-00018-1 amplification]<ref name=":0" /><ref name=":1" /> and therefore improves the quantification of binding events. With these improvements, iCLIP enhanced the capacity of CLIP to thoroughly amplify all types of cDNAs (rather than just those cDNAs that read through the crosslink sites), and enabled the sites of RNA-protein interactions to be quantified precisely and at high resolution by analysing the starting position of truncated cDNAs after their genomic mapping, and quantifying their UMIs with software called "[https://github.com/tomazc/iCount iCount]"<ref name=":0" /><ref name=":1" />. Almost all variants of CLIP that were more recently developed (such as eCLIP<ref>{{Cite journal |last=Van Nostrand |first=Eric L. |last2=Pratt |first2=Gabriel A. |last3=Shishkin |first3=Alexander A. |last4=Gelboin-Burkhart |first4=Chelsea |last5=Fang |first5=Mark Y. |last6=Sundararaman |first6=Balaji |last7=Blue |first7=Steven M. |last8=Nguyen |first8=Thai B. |last9=Surka |first9=Christine |last10=Elkins |first10=Keri |last11=Stanton |first11=Rebecca |last12=Rigo |first12=Frank |last13=Guttman |first13=Mitchell |last14=Yeo |first14=Gene W. |date=June 2016 |title=Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) |url=https://pubmed.ncbi.nlm.nih.gov/27018577 |journal=Nature Methods |volume=13 |issue=6 |pages=508–514 |doi=10.1038/nmeth.3810 |issn=1548-7105 |pmc=4887338 |pmid=27018577}}</ref>, irCLIP<ref name=":3">{{Cite journal |last=Zarnegar |first=Brian J. |last2=Flynn |first2=Ryan A. |last3=Shen |first3=Ying |last4=Do |first4=Brian T. |last5=Chang |first5=Howard Y. |last6=Khavari |first6=Paul A. |date=June 2016 |title=irCLIP platform for efficient characterization of protein-RNA interactions |url=https://pubmed.ncbi.nlm.nih.gov/27111506 |journal=Nature Methods |volume=13 |issue=6 |pages=489–492 |doi=10.1038/nmeth.3840 |issn=1548-7105 |pmc=5477425 |pmid=27111506}}</ref> and others) have adopted these innovations of iCLIP<ref name=":2" />. Alternative approaches to identify protein-RNA crosslink sites include the mutational analysis of read-through cDNAs, such as nucleotide transitions in [[PAR-CLIP]]<ref>{{Cite journal |last=Hafner |first=Markus |last2=Landthaler |first2=Markus |last3=Burger |first3=Lukas |last4=Khorshid |first4=Mohsen |last5=Hausser |first5=Jean |last6=Berninger |first6=Philipp |last7=Rothballer |first7=Andrea |last8=Ascano |first8=Manuel |last9=Jungkamp |first9=Anna-Carina |last10=Munschauer |first10=Mathias |last11=Ulrich |first11=Alexander |last12=Wardle |first12=Greg S. |last13=Dewell |first13=Scott |last14=Zavolan |first14=Mihaela |last15=Tuschl |first15=Thomas |date=2010-04-02 |title=Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP |url=https://pubmed.ncbi.nlm.nih.gov/20371350 |journal=Cell |volume=141 |issue=1 |pages=129–141 |doi=10.1016/j.cell.2010.03.009 |issn=1097-4172 |pmc=2861495 |pmid=20371350}}</ref>, or other types of errors that can be introduced by reverse transcriptase when it reads through the crosslink site in standard [[HITS-CLIP]] method with the Crosslink induced mutation site (CIMS) analysis<ref>{{cite journal|last=Zhang|first=Chaolin|author2=Darnell, Robert B|title=Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data.|journal=Nature Biotechnology|date=1 June 2011|volume=29|issue=7|pages=607–614|doi=10.1038/nbt.1873|pmid=21633356|pmc=3400429}}</ref>. An improved variant of iCLIP (iiCLIP) recently became developed to improve the efficiency and convenience of cDNA library preparation, for example by enzymatically removing adaptor after ligation to minimise artefacts caused by adaptor carry-over, introducing the non-radioactive visualisation of the protein-RNA complex (as done originally by irCLIP<ref name=":3" />), increasing efficiency of ligation, proteinase and reverse transcription reactions, and enabling bead-based purification of cDNAs<ref>{{Cite journal |last=Lee |first=Flora C. Y. |last2=Chakrabarti |first2=Anob M. |last3=Hänel |first3=Heike |last4=Monzón-Casanova |first4=Elisa |last5=Hallegger |first5=Martina |last6=Militti |first6=Cristina |last7=Capraro |first7=Federica |last8=Sadée |first8=Christoph |last9=Toolan-Kerr |first9=Patrick |last10=Wilkins |first10=Oscar |last11=Turner |first11=Martin |last12=König |first12=Julian |last13=Sibley |first13=Christopher R. |last14=Ule |first14=Jernej |date=2021-08-27 |title=An improved iCLIP protocol |url=https://www.biorxiv.org/content/10.1101/2021.08.27.457890v1 |language=en |pages=2021.08.27.457890 |doi=10.1101/2021.08.27.457890v1.full#t1}}</ref>.


Analysis of CLIP sequencing data benefits from use of customised computational software, much of which is available as part of the [https://nf-co.re/clipseq Nextflow pipeline for CLIP analysis], and specialised software is available for [https://github.com/ulelab/ultraplex rapid demultiplexing] of complex multiplexed libraries, comparative visualisation of [https://github.com/ulelab/clipplotr crosslinking profiles] across RNAs, [https://github.com/ulelab/clippy identification of the peaks] of clustered protein-RNA crosslink sites, and [https://github.com/ulelab/peka identification of sequence motifs] enriched around prominent crosslinks. Moreover, [https://imaps.goodwright.com/ iMaps] provides a free CLIP analysis web platform and well-curated community database to facilitate studies of RNA regulatory networks across organisms, with a backend based on the Nextflow pipeline. It is applicable to the many variant protocols of CLIP (such as iCLIP, eCLIP, etc), and can be used to analyse unpublished data in a secure manner, or to obtain public CLIP data in a well-annotated format, along with various forms of quality control, visualisation and comparison. Questions on the experimental and computational challenges are collated on the Q&A [https://clipforum.imaps.goodwright.com/ CLIP Forum].
Analysis of CLIP sequencing data benefits from use of customised computational software, much of which is available as part of the [https://nf-co.re/clipseq Nextflow pipeline for CLIP analysis], and specialised software is available for [https://github.com/ulelab/ultraplex rapid demultiplexing] of complex multiplexed libraries<ref>{{Cite journal |last=Wilkins |first=Oscar G. |last2=Capitanchik |first2=Charlotte |last3=Luscombe |first3=Nicholas M. |last4=Ule |first4=Jernej |date=2021 |title=Ultraplex: A rapid, flexible, all-in-one fastq demultiplexer |url=https://pubmed.ncbi.nlm.nih.gov/34286104 |journal=Wellcome Open Research |volume=6 |pages=141 |doi=10.12688/wellcomeopenres.16791.1 |issn=2398-502X |pmc=8287537 |pmid=34286104}}</ref>, comparative visualisation of [https://github.com/ulelab/clipplotr crosslinking profiles] across RNAs<ref>{{Cite journal |last=Chakrabarti |first=Anob M. |last2=Capitanchik |first2=Charlotte |last3=Ule |first3=Jernej |last4=Luscombe |first4=Nicholas M. |date=2021-09-11 |title=clipplotr - a comparative visualisation and analysis tool for CLIP data |url=https://www.biorxiv.org/content/10.1101/2021.09.10.459763v1 |language=en |pages=2021.09.10.459763 |doi=10.1101/2021.09.10.459763v1}}</ref>, [https://github.com/ulelab/clippy identification of the peaks] of clustered protein-RNA crosslink sites, and [https://github.com/ulelab/peka identification of sequence motifs] enriched around prominent crosslinks<ref>{{Cite journal |last=Kuret |first=Klara |last2=Amalietti |first2=Aram Gustav |last3=Jones |first3=D. Marc |last4=Capitanchik |first4=Charlotte |last5=Ule |first5=Jernej |date=2022-09-09 |title=Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP |url=https://pubmed.ncbi.nlm.nih.gov/36085079 |journal=Genome Biology |volume=23 |issue=1 |pages=191 |doi=10.1186/s13059-022-02755-2 |issn=1474-760X |pmc=9461102 |pmid=36085079}}</ref>. Moreover, [https://imaps.goodwright.com/ iMaps] provides a free CLIP analysis web platform and well-curated community database to facilitate studies of RNA regulatory networks across organisms, with a backend based on the Nextflow pipeline. It is applicable to the many variant protocols of CLIP (such as iCLIP, eCLIP, etc), and can be used to analyse unpublished data in a secure manner, or to obtain public CLIP data in a well-annotated format, along with various forms of quality control, visualisation and comparison. Questions on the experimental and computational challenges are collated on the Q&A [https://clipforum.imaps.goodwright.com/ CLIP Forum].


==References==
==References==

Revision as of 10:46, 22 January 2023

iCLIP[1][2][3] (individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation) is a variant of the original CLIP method used for identifying protein-RNA interactions[4], which uses UV light to covalently bind proteins and RNA molecules to identify RNA binding sites of proteins. This cross-linking step has generally less background than standard RNA immunoprecipitation (RIP) protocols, because the covalent bond formed by UV light allows RNA to be fragmented, followed by stringent purification, and this also enables CLIP to identify the positions of protein-RNA interactions[5]. As with all CLIP methods, iCLIP allows for a very stringent purification of the linked protein-RNA complexes by stringent washing during immunoprecipitation followed by SDS-PAGE and transfer to nitrocellulose. The labelled protein-RNA complexes are then visualised for quality control, excised from nitrocellulose, and treated with proteinase to release the RNA, leaving only a few amino acids at the crosslink site of the RNA[6].

The RNA is then reverse transcribed, causing most cDNAs to truncate at the crosslink site, and the key innovation and unique feature in the development of iCLIP was to enable such truncated cDNAs to be PCR amplified and sequenced using a next-generation sequencing platform. Another transformative innovation of iCLIP was to add a random sequence (unique molecular identifier, UMI) along with experimental barcodes to the primer used for reverse transcription, which is used to barcode unique cDNAs, thus minimising any errors or quantitative biases of PCR [./Https://www.nature.com/articles/s43586-021-00018-1 amplification][1][5] and therefore improves the quantification of binding events. With these improvements, iCLIP enhanced the capacity of CLIP to thoroughly amplify all types of cDNAs (rather than just those cDNAs that read through the crosslink sites), and enabled the sites of RNA-protein interactions to be quantified precisely and at high resolution by analysing the starting position of truncated cDNAs after their genomic mapping, and quantifying their UMIs with software called "iCount"[1][5]. Almost all variants of CLIP that were more recently developed (such as eCLIP[7], irCLIP[8] and others) have adopted these innovations of iCLIP[6]. Alternative approaches to identify protein-RNA crosslink sites include the mutational analysis of read-through cDNAs, such as nucleotide transitions in PAR-CLIP[9], or other types of errors that can be introduced by reverse transcriptase when it reads through the crosslink site in standard HITS-CLIP method with the Crosslink induced mutation site (CIMS) analysis[10]. An improved variant of iCLIP (iiCLIP) recently became developed to improve the efficiency and convenience of cDNA library preparation, for example by enzymatically removing adaptor after ligation to minimise artefacts caused by adaptor carry-over, introducing the non-radioactive visualisation of the protein-RNA complex (as done originally by irCLIP[8]), increasing efficiency of ligation, proteinase and reverse transcription reactions, and enabling bead-based purification of cDNAs[11].

Analysis of CLIP sequencing data benefits from use of customised computational software, much of which is available as part of the Nextflow pipeline for CLIP analysis, and specialised software is available for rapid demultiplexing of complex multiplexed libraries[12], comparative visualisation of crosslinking profiles across RNAs[13], identification of the peaks of clustered protein-RNA crosslink sites, and identification of sequence motifs enriched around prominent crosslinks[14]. Moreover, iMaps provides a free CLIP analysis web platform and well-curated community database to facilitate studies of RNA regulatory networks across organisms, with a backend based on the Nextflow pipeline. It is applicable to the many variant protocols of CLIP (such as iCLIP, eCLIP, etc), and can be used to analyse unpublished data in a secure manner, or to obtain public CLIP data in a well-annotated format, along with various forms of quality control, visualisation and comparison. Questions on the experimental and computational challenges are collated on the Q&A CLIP Forum.

References

  1. ^ a b c König, Julian; Zarnack, Kathi; Rot, Gregor; Curk, Tomaz; Kayikci, Melis; Zupan, Blaz; Turner, Daniel J.; Luscombe, Nicholas M.; Ule, Jernej (July 2010). "iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution". Nature Structural & Molecular Biology. 17 (7): 909–915. doi:10.1038/nsmb.1838. ISSN 1545-9985. PMC 3000544. PMID 20601959.
  2. ^ Haberman, Nejc; Huppertz, Ina; Attig, Jan; König, Julian; Wang, Zhen; Hauer, Christian; Hentze, Matthias W.; Kulozik, Andreas E.; Le Hir, Hervé; Curk, Tomaž; Sibley, Christopher R.; Zarnack, Kathi; Ule, Jernej (2017-01-16). "Insights into the design and interpretation of iCLIP experiments". Genome Biology. 18 (1): 7. doi:10.1186/s13059-016-1130-x. ISSN 1474-760X. PMC 5240381. PMID 28093074.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ König, Julian; Zarnack, Kathi; Luscombe, Nicholas M.; Ule, Jernej (18 January 2012). "Protein–RNA interactions: new genomic technologies and perspectives". Nature Reviews Genetics. 13 (2): 77–83. doi:10.1038/nrg3141. PMC 4962561. PMID 22251872.
  4. ^ Ule, Jernej; Jensen, Kirk B.; Ruggiu, Matteo; Mele, Aldo; Ule, Aljaz; Darnell, Robert B. (2003-11-14). "CLIP identifies Nova-regulated RNA networks in the brain". Science (New York, N.Y.). 302 (5648): 1212–1215. doi:10.1126/science.1090095. ISSN 1095-9203. PMID 14615540.
  5. ^ a b c Hafner, Markus; Katsantoni, Maria; Köster, Tino; Marks, James; Mukherjee, Joyita; Staiger, Dorothee; Ule, Jernej; Zavolan, Mihaela (2021-03-04). "CLIP and complementary methods". Nature Reviews Methods Primers. 1 (1): 1–23. doi:10.1038/s43586-021-00018-1. ISSN 2662-8449.
  6. ^ a b Lee, Flora C. Y.; Ule, Jernej (2018-02-01). "Advances in CLIP Technologies for Studies of Protein-RNA Interactions". Molecular Cell. 69 (3): 354–369. doi:10.1016/j.molcel.2018.01.005. ISSN 1097-4164. PMID 29395060.
  7. ^ Van Nostrand, Eric L.; Pratt, Gabriel A.; Shishkin, Alexander A.; Gelboin-Burkhart, Chelsea; Fang, Mark Y.; Sundararaman, Balaji; Blue, Steven M.; Nguyen, Thai B.; Surka, Christine; Elkins, Keri; Stanton, Rebecca; Rigo, Frank; Guttman, Mitchell; Yeo, Gene W. (June 2016). "Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)". Nature Methods. 13 (6): 508–514. doi:10.1038/nmeth.3810. ISSN 1548-7105. PMC 4887338. PMID 27018577.
  8. ^ a b Zarnegar, Brian J.; Flynn, Ryan A.; Shen, Ying; Do, Brian T.; Chang, Howard Y.; Khavari, Paul A. (June 2016). "irCLIP platform for efficient characterization of protein-RNA interactions". Nature Methods. 13 (6): 489–492. doi:10.1038/nmeth.3840. ISSN 1548-7105. PMC 5477425. PMID 27111506.
  9. ^ Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas (2010-04-02). "Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP". Cell. 141 (1): 129–141. doi:10.1016/j.cell.2010.03.009. ISSN 1097-4172. PMC 2861495. PMID 20371350.
  10. ^ Zhang, Chaolin; Darnell, Robert B (1 June 2011). "Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data". Nature Biotechnology. 29 (7): 607–614. doi:10.1038/nbt.1873. PMC 3400429. PMID 21633356.
  11. ^ Lee, Flora C. Y.; Chakrabarti, Anob M.; Hänel, Heike; Monzón-Casanova, Elisa; Hallegger, Martina; Militti, Cristina; Capraro, Federica; Sadée, Christoph; Toolan-Kerr, Patrick; Wilkins, Oscar; Turner, Martin; König, Julian; Sibley, Christopher R.; Ule, Jernej (2021-08-27). "An improved iCLIP protocol": 2021.08.27.457890. doi:10.1101/2021.08.27.457890v1.full#t1. {{cite journal}}: Cite journal requires |journal= (help)
  12. ^ Wilkins, Oscar G.; Capitanchik, Charlotte; Luscombe, Nicholas M.; Ule, Jernej (2021). "Ultraplex: A rapid, flexible, all-in-one fastq demultiplexer". Wellcome Open Research. 6: 141. doi:10.12688/wellcomeopenres.16791.1. ISSN 2398-502X. PMC 8287537. PMID 34286104.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Chakrabarti, Anob M.; Capitanchik, Charlotte; Ule, Jernej; Luscombe, Nicholas M. (2021-09-11). "clipplotr - a comparative visualisation and analysis tool for CLIP data": 2021.09.10.459763. doi:10.1101/2021.09.10.459763v1. {{cite journal}}: Cite journal requires |journal= (help)
  14. ^ Kuret, Klara; Amalietti, Aram Gustav; Jones, D. Marc; Capitanchik, Charlotte; Ule, Jernej (2022-09-09). "Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP". Genome Biology. 23 (1): 191. doi:10.1186/s13059-022-02755-2. ISSN 1474-760X. PMC 9461102. PMID 36085079.{{cite journal}}: CS1 maint: unflagged free DOI (link)