Jump to content

Pythium ultimum: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: url, pages. URLs might have been anonymized. Add: s2cid. Formatted dashes. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 2498/3850
Expand, etc.
Line 1: Line 1:
{{Short description|Species of plant pathogen}}
{{Short description|Pathogenic oomycete}}
{{Speciesbox
{{Speciesbox
|image=
|image=
Line 9: Line 9:
|subdivision_ranks=Varieties
|subdivision_ranks=Varieties
|subdivision=
|subdivision=
* [[Pythium ultimum var. ultimum|''Pythium ultimum'' var. ''ultimum'']]
* [[Pythium ultimum var. ultimum|''P. u.'' var. ''ultimum'']]
* [[Pythium ultimum var. sporangiiferum|''Pythium ultimum'' var. ''sporangiiferum'']]
* [[Pythium ultimum var. sporangiiferum|''P. u.'' var. ''sporangiiferum'']]
}}
}}


'''''Pythium ultimum''''' is a [[plant pathogen]]. It causes the [[damping off]] and root rot diseases of hundreds of diverse plant hosts including [[corn]], [[soybean]], [[potato]], [[wheat]], [[fir]], and many ornamental species.<ref>Farr, D. F. and Rossman, A. Y. (2014) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. {{cite web |url=http://nt.ars-grin.gov/fungaldatabases/ |title=Fungal Databases, Systematic Botany and Mycology Laboratory |access-date=2007-01-30 |url-status=dead |archiveurl=https://web.archive.org/web/20070130123212/http://nt.ars-grin.gov/fungaldatabases/ |archivedate=2007-01-30 }}</ref> ''P. ultimum'' belongs to the [[Peronosporales|peronosporalean]] lineage of [[oomycete]]s,<ref>Dick, M. W. (2001) Straminipilous Fungi. Dordrecht: Kluwer Academic Publishers</ref> along with other important plant pathogens such as ''[[Phytophthora]]'' spp. and many genera of [[downy mildews]]. ''P. ultimum'' is a frequent inhabitant of fields, freshwater ponds, and decomposing vegetation in most areas of the world. Contributing to the widespread distribution and persistence of ''P. ultimum'' is its ability to grow [[saprotroph]]ically in soil and plant residue. This trait is also exhibited by most ''[[Pythium]]'' spp. but not by the related ''Phytophthora'' spp., which can only colonize living plant hosts.
'''''Pythium ultimum''''' is a [[plant pathogen]]. It causes [[damping off]] and [[root rot]] diseases of hundreds of diverse plant [[host (epidemiology)|hosts]] including [[corn]], [[soybean]], [[potato]], [[wheat]], [[fir]], and many ornamental species.<ref>Farr, D. F. and Rossman, A. Y. (2014) Fungal Databases, Systematic Mycology and Microbiology Laboratory, [[USDA ARS|ARS, USDA]]. {{cite web |url=http://nt.ars-grin.gov/fungaldatabases/ |title=Fungal Databases, Systematic Botany and Mycology Laboratory |access-date=2007-01-30 |url-status=dead |archiveurl=https://web.archive.org/web/20070130123212/http://nt.ars-grin.gov/fungaldatabases/ |archivedate=2007-01-30 }}</ref> ''P. ultimum'' belongs to the [[Peronosporales|peronosporalean]] lineage of [[oomycete]]s,<ref>Dick, M. W. (2001) Straminipilous Fungi. Dordrecht: [[Kluwer Academic Publishers]].</ref> along with other important plant pathogens such as ''[[Phytophthora]]'' spp. and many genera of [[downy mildews]]. ''P. ultimum'' is a frequent inhabitant of fields, freshwater ponds, and decomposing vegetation in most areas of the world. Contributing to the widespread distribution and persistence of ''P. ultimum'' is its ability to grow [[saprotroph]]ically in soil and plant residue. This trait is also exhibited by most ''[[Pythium]]'' spp. but not by the related ''Phytophthora'' spp., which can only colonize living plant hosts.


==Pathology and disease management==
== Pathology and disease management ==
Infections of seeds and roots are initiated by both the [[Mycelium|mycelia]] and spores of ''P. ultimum''. Two spore types are made, depending on the strain. ''P. ultimum'' is a species complex that includes [[Pythium ultimum var. ultimum|''P. u.'' var. ''ultimum'']] and [[Pythium ultimum var. sporangiiferum|''P. u.'' var. ''sporangiiferum'']].<ref>Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Levesque, C. A., Spies, C. F. J., Okubara, P. A., et al. (2013) Molecular detection and quantification of ''Pythium'' species: evolving taxonomy, new tools, and challenges. Plant Dis. 97, 4-20.</ref> The major distinguishing feature is that [[Sporangium|sporangia]] and [[zoospore]]s (swimming spores) are produced only rarely by ''P. u.'' var. ''ultimum''. Both species make [[oospore]]s, which are thick-walled structures produced by sexual recombination. Both varieties are self-fertile ([[homothallic]]), which means that a single strain can mate with itself. In addition to oospores, ''P. u.'' var. ''ultimum'' also makes [[hypha]]l swellings which germinate in a manner resembling [[Sporangium|sporangia]] to form plant-infecting hyphae. One important ecological difference between the different types of spores is that sporangia and zoospores are short-lived, while the thick-walled oospores can persist for years within soil, surviving even winter freezes. Mycelia and oospores in soil can infect seeds or roots. This leads to wilting, reduced yield, and ultimately plant death. Common signs of a ''Pythium'' infection include stunting of the plants, brown coloration of root-tips, and wilting of the plant during the warm part of the day. Management of disease is challenging but focuses on [[sanitation]], [[fungicide]]s, and [[biological control]]. Fungicides include [[mefenoxam]], [[thiadiazole]], [[etridiazole]], [[propamocarb]], [[dimethomorph]], and [[phosphonate]]s. Biological control agents include the bacteria ''[[Bacillus subtilis]]'', ''[[Streptomyces griseoviridis]]'', and the fungi ''[[Candida oleophila]]'', ''[[Gliocladium catenulatum]]'', ''[[Trichoderma harzianum]]'', and ''[[Trichoderma virens]]''.<ref>Moorman, G. Pythium. http://extension.psu.edu/pests/plant-diseases/all-fact-sheets/pythium</ref>
Infections of seeds and roots are initiated by both the [[Mycelium|mycelia]] and spores of ''P. ultimum''. Two spore types are made, depending on the strain. ''P. ultimum'' is a species complex that includes [[Pythium ultimum var. ultimum|''P. u.'' var. ''ultimum'']] and [[Pythium ultimum var. sporangiiferum|''P. u.'' var. ''sporangiiferum'']].<ref>Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Levesque, C. A., Spies, C. F. J., Okubara, P. A., et al. (2013) Molecular detection and quantification of ''Pythium'' species: evolving taxonomy, new tools, and challenges. Plant Dis. 97, 4-20.</ref> The major distinguishing feature is that [[Sporangium|sporangia]] and [[zoospore]]s (swimming spores) are produced only rarely by ''P. u.'' var. ''ultimum''. Both species make [[oospore]]s, which are thick-walled structures produced by sexual recombination. Both varieties are self-fertile ([[homothallic]]), which means that a single strain can mate with itself. In addition to oospores, ''P. u.'' var. ''ultimum'' also makes [[hypha]]l swellings which germinate in a manner resembling [[Sporangium|sporangia]] to form plant-infecting hyphae. One important ecological difference between the different types of spores is that sporangia and zoospores are short-lived, while the thick-walled oospores can persist for years within soil, surviving even winter freezes. Mycelia and oospores in soil can infect seeds or roots. This leads to wilting, reduced yield, and ultimately plant death. Common signs of a ''Pythium'' infection include stunting of the plants, brown coloration of root-tips, and wilting of the plant during the warm part of the day. Management of disease is challenging but focuses on [[sanitation]], [[fungicide]]s, and [[biological control]]. Fungicides include [[mefenoxam]], [[thiadiazole]], [[etridiazole]], [[propamocarb]], [[dimethomorph]], and [[phosphonate]]s. Biological control agents include the bacteria ''[[Bacillus subtilis]]'', ''[[Streptomyces griseoviridis]]'', and the fungi ''[[Candida oleophila]]'', ''[[Gliocladium catenulatum]]'', ''[[Trichoderma harzianum]]'', and ''[[Trichoderma virens|T. virens]]''.<ref>Moorman, G. Pythium. http://extension.psu.edu/pests/plant-diseases/all-fact-sheets/pythium</ref>


Effective resistance in the plant host is generally not available. Sanitation is very important since the pathogen can be easily introduced into pasteurized soil or even soil-free potting mixes on dirty tools or pots. Especially in greenhouses, fungus gnats may also help move the pathogen from place to place. A recent study of greenhouses in Michigan revealed that the same pathogen populations were responsible for the root rot of all greenhouse ornamental plants over a two-year period. These results stress the importance of sanitation and encourage greenhouse growers to improve their scouting of all incoming plant material to prevent additional root rot.<ref>{{cite journal |title=Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan|journal=Plant Disease |year=2019|publisher=American Phytopathological Society |doi=10.1094/PDIS-03-18-0394-RE|last1=Del Castillo Múnera|first1=Johanna|last2=Quesada-Ocampo|first2=Lina M.|last3=Rojas|first3=Alejandro|last4=Chilvers|first4=Martin I.|last5=Hausbeck|first5=Mary K.|volume=103|issue=5|pages=859–867|pmid=30908944|doi-access=free}}</ref>
Effective resistance in the plant host is generally not available. Sanitation is very important since the pathogen can be easily introduced into pasteurized soil or even soil-free potting mixes on dirty tools or pots. Especially in greenhouses, fungus gnats may also help move the pathogen from place to place. A recent study of greenhouses in Michigan revealed that the same pathogen populations were responsible for the root rot of all greenhouse ornamental plants over a two-year period. These results stress the importance of sanitation and encourage greenhouse growers to improve their scouting of all incoming plant material to prevent additional root rot.<ref>{{cite journal |title=Population Structure of ''Pythium ultimum'' from Greenhouse Floral Crops in Michigan|journal=Plant Disease |year=2019|publisher= [[American Phytopathological Society]] (APS) |doi=10.1094/PDIS-03-18-0394-RE|last1=Del Castillo Múnera|first1=Johanna|last2=Quesada-Ocampo|first2=Lina M.|last3=Rojas|first3=Alejandro|last4=Chilvers|first4=Martin I.|last5=Hausbeck|first5=Mary K.|volume=103|issue=5|pages=859–867|pmid=30908944|doi-access=free}}</ref>


==Genetics==
== Genetics ==
''Pythium ultimum'' is [[taxonomy|divided]] into varieties [[Pythium ultimum var. ultimum|''ultimum'']] and [[Pythium ultimum var. sporangiiferum|''sporangiiferum'']], the genomes of both of which have been sequenced.<ref>
The genomes of both ''P. u.'' var. ''ultimum'' and ''P. u.'' var. ''sporangiiferum'' have been sequenced.<ref>Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Levesque, C. A. and Buell, C. R. (2013) Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS ONE 8, e75072</ref><ref>Levesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., et al. (2010) Genome sequence of the necrotrophic plant pathogen ''Pythium ultimum'' reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, R73.</ref> Analysis of the genomes suggest that the two species encode 15,290 and 14,086 proteins, respectively.
:This review...
:
: {{ Cite journal
| issue = 4
| date = 2014
| volume = 16
| publisher = [[Wiley-Blackwell]]
| last1 = Kamoun
| first1 = Sophien
| last2 = Furzer
| first2 = Oliver
| last3 = Jones
| first3 = Jonathan
| last4 = Judelson
| first4 = Howard
| last5 = Ali
| first5 = Gul Shad
| last6 = Dalio
| first6 = Ronaldo
| last7 = Roy
| first7 = Sanjoy
| last8 = Schena
| first8 = Leonardo
| last9 = Zambounis
| first9 = Antonios
| last10 = Panabières
| first10 = Franck
| last11 = Cahill
| first11 = David
| last12 = Ruocco
| first12 = Michelina
| last13 = Figueiredo
| first13 = Andreia
| last14 = Chen
| first14 = Xiao
| last15 = Hulvey
| first15 = Jon
| last16 = Stam
| first16 = Remco
| last17 = Lamour
| first17 = Kurt
| last18 = Gijzen
| first18 = Mark
| last19 = Tyler
| first19 = Brett
| last20 = Grunwald
| first20 = Niklaus
| last21 = Mukhtar
| first21 = Shahid
| last22 = Tome
| first22 = Daniel
| last23 = Tor
| first23 = Mahmut
| last24 = Van Den Ackerveken
| first24 = Guido
| last25 = McDowell
| first25 = John
| last26 = Daayf
| first26 = Fouad
| last27 = Fry
| first27 = William
| last28 = Lindqvist
| first28 = Hannele
| last29 = Meijer
| first29 = Harold
| last30 = Petre
| first30 = Benjamin
| last31 = Ristaino
| first31 = Jean
| last32 = Yoshida
| first32 = Kentaro
| last33 = Birch
| first33 = Paul
| last34 = Govers
| first34 = Francine
| pages = 413–434
| title = The Top 10 oomycete pathogens in molecular plant pathology
| journal = [[Molecular Plant Pathology]] (MPP)
| issn = 1464-6722
| doi = 10.1111/mpp.12190
| author1-link = Sophien Kamoun
| id = [[British Society for Plant Pathology]] (BSPP)
}}
:
:...cites this research:
:
:Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Levesque, C. A. and Buell, C. R. (2013) Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS ONE 8, e75072. {{DOI|10.1371/journal.pone.0075072}}. {{S2CID|16903976}}.
</ref><ref>Levesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., et al. (2010) Genome sequence of the necrotrophic plant pathogen ''Pythium ultimum'' reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, R73.</ref> Analysis of the genomes suggest that the two species encode 15,290 and 14,086 proteins, respectively.


Samples of Pythium sp isolates from soils in Japan were analyzed [[Phylogenetics|phylogenetically]]; the [[Phylogenetic tree|phylogenetic trees]] were divided into five monophyletic clades, proposed as new genera (Pythium, [[Elongisporangium]], [[Ovatisporangium]], [[Globisporangium]], and [[Pilasporangium]]). Under this new phylogeny, Pythium ultimum would be renamed to Globisporangium ultimum. <ref>{{cite journal |last1=Uzuhashi, S., Kakishima, M., & Tojo, M. |title=Phylogeny of the genus Pythium and description of new genera.| url=https://www.sciencedirect.com/science/article/abs/pii/S1340354010701431 |journal=Mycoscience |date=2010 |volume=51 |issue=5 |pages=337–365 |doi=10.1007/s10267-010-0046-7 |s2cid=83622477 | access-date= 12 January 2023}} </ref>
Samples of ''Pythium'' sp. isolates from soils in Japan were analyzed [[Phylogenetics|phylogenetically]]; the [[phylogenetic tree]]s were divided into five monophyletic clades, proposed as new genera (''Pythium'', ''[[Elongisporangium]]'', ''[[Ovatisporangium]]'', ''[[Globisporangium]]'', and ''[[Pilasporangium]]''). Under this new phylogeny, ''P. ultimum'' would be renamed to ''[[Globisporangium ultimum]]''. <ref>{{cite journal | authors = Uzuhashi, S., Kakishima, M., & Tojo, M. |title=Phylogeny of the genus ''Pythium'' and description of new genera |journal= [[Mycoscience]] |date=2010 |volume=51 |issue=5 |pages=337–365 |doi=10.1007/s10267-010-0046-7 |s2cid=83622477 | access-date= 12 January 2023}} </ref>


Liang ''et al.'', 2020 finds [[GH55]] {{endash}} common in some other ''Pythium'' spp. {{endash}} is absent from this species.<ref name = "Horizontal-Gene-Transfer" >
:This review...
:
:{{ Cite journal
| year = 2022
| publisher = [[Elsevier BV]]
| volume = 40
| last1 = Hashemi
| first1 = Maryam
| last2 = Tabet
| first2 = Dania
| last3 = Sandroni
| first3 = Murilo
| last4 = Benavent
| first4 = Clara
| last5 = Seematti
| first5 = Jenifer
| last6 = Andersen
| first6 = Christian
| pages = 53–69
| last7 = Grenville
| first7 = Laura
| journal = [[Fungal Biology Reviews]]
| issn = 1749-4613
| author6-link = User:Christian Benjamin
| title = The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of ''Phytophthora infestans''
| s2cid = 244889249
| doi = 10.1016/j.fbr.2021.11.003
| id = [[British Mycological Society]] (BMS)
}}
:
:...cites this study:
:
:{{ Cite journal
| date = 2020
| publisher = [[Frontiers Media]]
| first5 = Laura
| first4 = Daolong
| first3 = Ramesh
| first2 = Christian
| first1 = Dong
| journal = [[Frontiers in Microbiology]]
| last5 = Grenville-Briggs
| last4 = Dou
| last3 = Vetukuri
| last2 = Andersen
| last1 = Liang
| title = Horizontal Gene Transfer and Tandem Duplication Shape the Unique CAZyme Complement of the Mycoparasitic Oomycetes ''Pythium oligandrum'' and ''Pythium periplocum''
| s2cid = 225097281
| pmc = 7720654
| pmid = 33329445
| doi = 10.3389/fmicb.2020.581698
| author2-link = User:Christian Benjamin Andersen
}}
</ref>


==References==
== References ==
{{Reflist}}
{{Reflist}}


==External links==
== External links ==
* [http://pythium.plantbiology.msu.edu ''Pythium'' Genome Database]
* [http://pythium.plantbiology.msu.edu ''Pythium'' Genome Database]
* [http://www.speciesfungorum.org/Names/Names.asp Index Fungorum]
* [https://web.archive.org/web/20070820101227/http://nt.ars-grin.gov/fungaldatabases/ USDA ARS Fungal Database]
* [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=2052682&lvl=3&lin=f&keep=1&srchmode=1&unlock NCBI Taxonomy Browser]
* [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=2052682&lvl=3&lin=f&keep=1&srchmode=1&unlock NCBI Taxonomy Browser]


{{Taxonbar|from=Q7263907}}
{{Taxonbar|from=Q7263907}}











[[Category:Water mould plant pathogens and diseases]]
[[Category:Water mould plant pathogens and diseases]]

Revision as of 20:45, 22 April 2023

Pythium ultimum
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Oomycota
Order: Peronosporales
Family: Pythiaceae
Genus: Pythium
Species:
P. ultimum
Binomial name
Pythium ultimum
Trow, (1901)
Varieties

Pythium ultimum is a plant pathogen. It causes damping off and root rot diseases of hundreds of diverse plant hosts including corn, soybean, potato, wheat, fir, and many ornamental species.[1] P. ultimum belongs to the peronosporalean lineage of oomycetes,[2] along with other important plant pathogens such as Phytophthora spp. and many genera of downy mildews. P. ultimum is a frequent inhabitant of fields, freshwater ponds, and decomposing vegetation in most areas of the world. Contributing to the widespread distribution and persistence of P. ultimum is its ability to grow saprotrophically in soil and plant residue. This trait is also exhibited by most Pythium spp. but not by the related Phytophthora spp., which can only colonize living plant hosts.

Pathology and disease management

Infections of seeds and roots are initiated by both the mycelia and spores of P. ultimum. Two spore types are made, depending on the strain. P. ultimum is a species complex that includes P. u. var. ultimum and P. u. var. sporangiiferum.[3] The major distinguishing feature is that sporangia and zoospores (swimming spores) are produced only rarely by P. u. var. ultimum. Both species make oospores, which are thick-walled structures produced by sexual recombination. Both varieties are self-fertile (homothallic), which means that a single strain can mate with itself. In addition to oospores, P. u. var. ultimum also makes hyphal swellings which germinate in a manner resembling sporangia to form plant-infecting hyphae. One important ecological difference between the different types of spores is that sporangia and zoospores are short-lived, while the thick-walled oospores can persist for years within soil, surviving even winter freezes. Mycelia and oospores in soil can infect seeds or roots. This leads to wilting, reduced yield, and ultimately plant death. Common signs of a Pythium infection include stunting of the plants, brown coloration of root-tips, and wilting of the plant during the warm part of the day. Management of disease is challenging but focuses on sanitation, fungicides, and biological control. Fungicides include mefenoxam, thiadiazole, etridiazole, propamocarb, dimethomorph, and phosphonates. Biological control agents include the bacteria Bacillus subtilis, Streptomyces griseoviridis, and the fungi Candida oleophila, Gliocladium catenulatum, Trichoderma harzianum, and T. virens.[4]

Effective resistance in the plant host is generally not available. Sanitation is very important since the pathogen can be easily introduced into pasteurized soil or even soil-free potting mixes on dirty tools or pots. Especially in greenhouses, fungus gnats may also help move the pathogen from place to place. A recent study of greenhouses in Michigan revealed that the same pathogen populations were responsible for the root rot of all greenhouse ornamental plants over a two-year period. These results stress the importance of sanitation and encourage greenhouse growers to improve their scouting of all incoming plant material to prevent additional root rot.[5]

Genetics

Pythium ultimum is divided into varieties ultimum and sporangiiferum, the genomes of both of which have been sequenced.[6][7] Analysis of the genomes suggest that the two species encode 15,290 and 14,086 proteins, respectively.

Samples of Pythium sp. isolates from soils in Japan were analyzed phylogenetically; the phylogenetic trees were divided into five monophyletic clades, proposed as new genera (Pythium, Elongisporangium, Ovatisporangium, Globisporangium, and Pilasporangium). Under this new phylogeny, P. ultimum would be renamed to Globisporangium ultimum. [8]

Liang et al., 2020 finds GH55 – common in some other Pythium spp. – is absent from this species.[9]

References

  1. ^ Farr, D. F. and Rossman, A. Y. (2014) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. "Fungal Databases, Systematic Botany and Mycology Laboratory". Archived from the original on 2007-01-30. Retrieved 2007-01-30.
  2. ^ Dick, M. W. (2001) Straminipilous Fungi. Dordrecht: Kluwer Academic Publishers.
  3. ^ Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Levesque, C. A., Spies, C. F. J., Okubara, P. A., et al. (2013) Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Dis. 97, 4-20.
  4. ^ Moorman, G. Pythium. http://extension.psu.edu/pests/plant-diseases/all-fact-sheets/pythium
  5. ^ Del Castillo Múnera, Johanna; Quesada-Ocampo, Lina M.; Rojas, Alejandro; Chilvers, Martin I.; Hausbeck, Mary K. (2019). "Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan". Plant Disease. 103 (5). American Phytopathological Society (APS): 859–867. doi:10.1094/PDIS-03-18-0394-RE. PMID 30908944.
  6. ^
    This review...
    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan; Judelson, Howard; Ali, Gul Shad; Dalio, Ronaldo; Roy, Sanjoy; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett; Grunwald, Niklaus; Mukhtar, Shahid; Tome, Daniel; Tor, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William; Lindqvist, Hannele; Meijer, Harold; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul; Govers, Francine (2014). "The Top 10 oomycete pathogens in molecular plant pathology". Molecular Plant Pathology (MPP). 16 (4). Wiley-Blackwell: 413–434. doi:10.1111/mpp.12190. ISSN 1464-6722. British Society for Plant Pathology (BSPP).
    ...cites this research:
    Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Levesque, C. A. and Buell, C. R. (2013) Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS ONE 8, e75072. doi:10.1371/journal.pone.0075072. S2CID 16903976.
  7. ^ Levesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., et al. (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, R73.
  8. ^ "Phylogeny of the genus Pythium and description of new genera". Mycoscience. 51 (5): 337–365. 2010. doi:10.1007/s10267-010-0046-7. S2CID 83622477. {{cite journal}}: |access-date= requires |url= (help); Cite uses deprecated parameter |authors= (help)
  9. ^
    This review...
    Hashemi, Maryam; Tabet, Dania; Sandroni, Murilo; Benavent, Clara; Seematti, Jenifer; Andersen, Christian; Grenville, Laura (2022). "The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans". Fungal Biology Reviews. 40. Elsevier BV: 53–69. doi:10.1016/j.fbr.2021.11.003. ISSN 1749-4613. S2CID 244889249. British Mycological Society (BMS).
    ...cites this study:
    Liang, Dong; Andersen, Christian; Vetukuri, Ramesh; Dou, Daolong; Grenville-Briggs, Laura (2020). "Horizontal Gene Transfer and Tandem Duplication Shape the Unique CAZyme Complement of the Mycoparasitic Oomycetes Pythium oligandrum and Pythium periplocum". Frontiers in Microbiology. Frontiers Media. doi:10.3389/fmicb.2020.581698. PMC 7720654. PMID 33329445. S2CID 225097281.{{cite journal}}: CS1 maint: unflagged free DOI (link)

External links