Jump to content

Hydrolysis constant: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
Added Arsenic
Line 18: Line 18:


:''p'' MO<sub>''x''</sub>(OH)<sub>''z–2x''</sub>(s) + (''pz–q'') H<sup>+</sup> ⇌ M<sub>''p''</sub>(OH)<sub>''q''</sub><sup>(''pz–q'')</sup> + (''pz–px–q'') H<sub>2</sub>O
:''p'' MO<sub>''x''</sub>(OH)<sub>''z–2x''</sub>(s) + (''pz–q'') H<sup>+</sup> ⇌ M<sub>''p''</sub>(OH)<sub>''q''</sub><sup>(''pz–q'')</sup> + (''pz–px–q'') H<sub>2</sub>O

===Arsenic(III)===
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
{| class="wikitable"
|+
!Reaction
!Baes and Mesmer, 1976<ref name=":1">{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=103}}</ref>
!Nordstrom and Archer, 2003<ref>{{Cite book |last=Nordstrom |first=D.K. |title=Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. |last2=Archer |first2=D. |publisher=Kluwer Academic Publishers |year=2003 |editor-last=Welch |editor-first=AH |location=Amsterdam |pages=1‒25 |doi=10.1007/0-306-47956-7_1 |editor-last2=Stollenwerk |editor-first2=KG}}</ref>
!Nordstrom et al., 2014<ref>{{Cite journal |last=Nordstrom |first=D.K. |last2=Majzlan |first2=J. |last3=Königsberger |first3=E. |date=2014 |title=Thermodynamic properties for As minerals & aqueous species |journal=Reviews in Mineralogy & Geochemistry |volume=79 |pages=217‒255 |doi=10.2138/rmg.2014.79.4}}</ref>
|-
|As(OH)<sub>4</sub><sup>‒</sup> + H<sup>+</sup> ⇌ As(OH)<sub>3</sub> + H<sub>2</sub>O
|
| 9.17
| 9.24 ± 0.02
|}
:

===Arsenic(V)===
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
{| class="wikitable"
|+
!Reaction
!Khodakovsky et al. (1968)<ref>{{Cite journal |last=Khodakovsky |first=I.L. |last2=Ryzhenko |first2=B.N. |last3=Naumov |first3=G.B. |date=1968 |title=Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution) |journal=Geokhimiya |volume=12 |pages=1486‒ 1503, 1968}}</ref>
!Nordstrom and Archer, 2003<ref>{{Cite book |last=Nordstrom |first=D.K. |title=Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. |last2=Archer |first2=D. |publisher=Kluwer Academic Publishers |year=2003 |editor-last=Welch |editor-first=AH |location=Amsterdam |pages=1‒25 |doi=10.1007/0-306-47956-7_1 |editor-last2=Stollenwerk |editor-first2=KG}}</ref>
!Nordstrom et al., 2014<ref>{{Cite journal |last=Nordstrom |first=D.K. |last2=Majzlan |first2=J. |last3=Königsberger |first3=E. |date=2014 |title=Thermodynamic properties for As minerals & aqueous species |journal=Reviews in Mineralogy & Geochemistry |volume=79 |pages=217‒255 |doi=10.2138/rmg.2014.79.4}}</ref>
|-
|H<sub>2</sub>AsO<sub>4</sub><sup>‒</sup> + H<sup>+</sup> ⇌ H<sub>3</sub>AsO<sub>4</sub>
|2.21
| 2.26 ± 0.078
| 2.25 ± 0.04
|-
|HAsO<sub>4</sub><sup>2‒</sup> + H<sup>+</sup> ⇌ H<sub>2</sub>AsO<sub>4</sub><sup>‒</sup>
|6.93
|6.99 ± 0.1
|6.98 ± 0.11
|-
|AsO<sub>4</sub><sup>3‒</sup> + H<sup>+</sup> ⇌ HAsO<sub>4</sub><sup>2‒</sup>
|11.51
|11.80 ± 0.1
|11.58 ± 0.05
|}
:


===Barium===
===Barium===

Revision as of 17:17, 16 December 2023

The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+

and the corresponding formation constant as:

and associated equilibria can be written as:

MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH
p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O

Arsenic(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[1] Nordstrom and Archer, 2003[2] Nordstrom et al., 2014[3]
As(OH)4 + H+ ⇌ As(OH)3 + H2O 9.17 9.24 ± 0.02

Arsenic(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Khodakovsky et al. (1968)[4] Nordstrom and Archer, 2003[5] Nordstrom et al., 2014[6]
H2AsO4 + H+ ⇌ H3AsO4 2.21 2.26 ± 0.078 2.25 ± 0.04
HAsO42‒ + H+ ⇌ H2AsO4 6.93 6.99 ± 0.1 6.98 ± 0.11
AsO43‒ + H+ ⇌ HAsO42‒ 11.51 11.80 ± 0.1 11.58 ± 0.05

Barium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[1] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[8]
Ba2+ + H2O ⇌ BaOH+ + H+ –13.47 –13.47 –13.32 ± 0.07

Beryllium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[9]
Be2+ + H2O ⇌ BeOH+ + H+ –5.10
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+ –23.65
Be2+ + 3 H2O ⇌ Be(OH)3 + 3 H+ –23.25
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+ –37.42
2 Be2+ + H2O ⇌ Be2OH3+ + H+ –3.97
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+ –8.92
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+ –27.2
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O 6.69

Boron

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[10] NIST46[11]
B(OH)3 + H2O ⇌ Be(OH)4+ + H+ –9.236 –9.236 ± 0.002
2 B(OH)3 ⇌ B2(OH)5 + H+ –9.36 –9.306
3 B(OH)3 ⇌ B3O3(OH)4 + H+ + 2 H2O –7.03 –7.306
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O –16.3 –15.032

Cadmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[12] Powell et al., 2011[13] Brown and Ekberg, 2016[14]
Cd2+ + H2O ⇌ CdOH+ + H+ −10.08 –9.80 ± 0.10 −9.81 ± 0.10
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+ –20.35 –20.19 ± 0.13 −20.6 ± 0.4
Cd2+ + 3 H2O ⇌ Cd(OH)3 + 3 H+ <–33.3 –33.5 ± 0.5 −33.5 ± 0.5
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+ –47.35 –47.28 ± 0.15 −47.25 ± 0.15
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+ –9.390 –8.73 ± 0.01 −8.74 ± 0.10
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+ –32.85
Cd(OH)2(s) ⇌ Cd2+ + 2 OH –14.28 ± 0.12
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O 13.65 13.72 ± 0.12 13.71 ± 0.12

Calcium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[1] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[15]
Ca2+ + H2O ⇌ CaOH+ + H+ –12.85 –12.78 –12.57 ± 0.03
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O 22.80 22.8 22.75 ± 0.02

Chromium(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

Reaction NIST46[11] Ball and Nordstrom, 1988[16]
Cr2+ + H2O ⇌ CrOH+ + H+ –5.5
Cr(OH)2(s) ⇌ Cr2+ + 2 OH –17 ± 0.02

Chromium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[17] Rai et al., 1987[18] Ball and Nordstrom, 1988[16] Brown and Ekberg, 2016[19]
Cr3+ + H2O ⇌ CrOH2+ + H+ –4.0 –3.57 ± 0.08 –3.60 ± 0.07
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+ –9.7 –9.84 –9.65 ± 0.20
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+ –18 –16.19 –16.25 ± 0.19
Cr3+ + 4 H2O ⇌ Cr(OH)4- + 4 H+ –27.4 –27.65 ± 0.12 –27.56 ± 0.21
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+ –5.06 –5.0 –5.29 ± 0.16
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+ –8.15 –10.75 ± 0.15 –9.10 ± 0.14
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O 12 9.35 9.41 ± 0.17
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O 8.52
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O 7.83 ± 0.10

Chromium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[20] Ball and Nordstrom, 1998[16]
CrO42– + H+ ⇌ HCrO4 6.51 6.55 ± 0.04
HCrO4 + H+ ⇌ H2CrO4 –0.20
CrO42– + 2 H+ ⇌ H2CrO4 6.31
2 HCrO4 ⇌ Cr2O72– + H2O 1.523
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O 14.7 ± 0.1

Cobalt(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[21] Brown and Ekberg, 2016[22]
Co2+ + H2O ⇌ Co(OH)+ + H+ –9.65 −9.61 ± 0.17
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+ –18.8 −19.77 ± 0.11
Co2+ + 3 H2O ⇌ Co(OH)3 + 3 H+ –31.5 −32.01 ± 0.33
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+ –46.3
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+ –11.2
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+ –30.53
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O 12.3 13.24 ± 0.12
CoO(s) + 2 H+ ⇌ Co2+ + H2O 13.71 ± 0.10

Cobalt(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[23]
Co3+ + H2O ⇌ Co(OH)2+ + H+ −1.07 ± 0.11

Copper(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[24]
Cu+ + H2O ⇌ Cu(OH) + H+ –7.8 ± 0.4
Cu+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ –18.6 ± 0.6

Copper(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[25] NIST46[11] Plyasunova et al., 1997[26] Powell et al., 2007[27] Brown and Ekberg, 2016[24]
Cu2+ + H2O ⇌ CuOH+ + H+ < –8 –7.7 –7.97 ± 0.09 –7.95 ± 0.16 –7.64 ± 0.17
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ (< –17.3) –17.3 –16.23 ± 0.15 –16.2 ± 0.2 –16.24 ± 0.03
Cu2+ + 3 H2O ⇌ Cu(OH)3 + 3 H+ (< –27.8) –27.8 –26.63 ± 0.40 –26.60 ± 0.09 –26.65 ± 0.13
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+ –39.6 –39.6 –39.73 ± 0.17 –39.74 ± 0.18 –39.70 ± 0.19
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+ –6.71 ± 0.30 –6.40 ± 0.12 –6.41 ± 0.17
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+ –10.36 –10.3 –10.55 ± 0.17 –10.43 ± 0.07 –10.55 ± 0.02
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+ –20.95 ± 0.30 –21.1 ± 0.2 –21.2 ± 0.4
CuO(s) + 2 H+ ⇌ Cu2+ + H2O 7.62 7.64 ± 0.06 7.64 ± 0.06 7.63 ± 0.05
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O 8.67 ± 0.05 8.68 ± 0.10

Gadolinium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[28] Brown and Ekberg, 2016[29]
Gd3+ + H2O ⇌ GdOH2+ + H+ –8.0 –7.87 ± 0.05
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+ (–16.4)
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+ (–25.2)
Gd3+ + 4 H2O ⇌ Gd(OH)4 + 4 H+ –34.4
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+ –14.16 ± 0.20
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+ –33.0 ± 0.3
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O 15.6 17.20 ± 0.48
Gd(OH)3(c) + OH ⇌ Gd(OH)4 –4.8 ± 0.3
Gd(OH)3(c) ⇌ Gd(OH)3 –9.6

Gallium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[30] Smith et al., 2003[31] Brown and Ekberg, 2016[32]
Ga3+ + H2O ⇌ GaO)2+ + H+ –2.6 –2.897 –2.74
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+ –5.9 –6.694 –7.0
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+ –10.3 –11.96
Ga3+ + 4 H2O ⇌ Ga(OH)4 + 4 H+ –16.6 –16.588 –15.52
Ga(OH)3(s) ⇌ Ga3+ + 3 OH –37 –37.0
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH –39.06 –39.1 –40.51

Germanium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[33] Wood and Samson, 2006[34] Filella and May, 2023[35]
Ge(OH)4 ⇌ GeO(OH)3- + H+ –9.31 –9.32 ± 0.05 –9.099
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+ –21.9
GeO2(OH)22– + H+ ⇌ GeO(OH)3 12.76
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+ –14.24
8 Ge(OH)4 + 3 OH ⇌ Ge8(OH)353– 28.33
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 –1.35 –1.373
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 -4.37 –5.02 –4.999

Iron(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[36] Nordstrom et al., 1990[7] Hummel et al., 2002[37] Lemire et al., 2013[38] Brown and Ekberg, 2016[39]
Fe2+ + H2O ⇌ FeOH+ + H+ –9.3 ± 0.5 –9.5 –9.5 –9.1 ± 0.4 −9.43 ± 0.10
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ –20.5 ± 1.0 −20.52 ± 0.08
Fe2+ + 3 H2O ⇌ Fe(OH)3- + 3 H+ –29.4 ± 1.2 −32.68 ± 0.15
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O 12.27 ± 0.88

Lithium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[40] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[41]
Li+ + H2O ⇌ LiOH + H+ –13.64 ± 0.06 –13.64 –13.84 ± 0.14

Magnesium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[42] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[43]
Mg2+ + H2O ⇌ MgOH+ + H+ –11.44 –11.44 –11.70 ± 0.04
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+ –39.71
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O 16.84 16.84 17.11 ± 0.04

Manganese(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[44] Baes and Mesmer, 1976[45] Nordstrom et al., 1990[7] Hummel et al., 2002[37] Brown and Ekberg, 2016[46]
Mn2+ + H2O ⇌ MnOH+ + H+ –10.59 –10.59 –10.59 –10.59 −10.58 ± 0.04
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+ –22.2 −22.18 ± 0.20
Mn2+ + 3 H2O ⇌ Mn(OH)3 + 3 H+ –34.8 −34.34 ± 0.45
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+ –48.3 −48.28 ± 0.40
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+ –10.56
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+ –23.90
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O 15.2 15.2 15.2 15.19 ± 0.10
MnO(s) + 2 H+ ⇌ Mn2+ + H2O 17.94 ± 0.12

Manganese(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[47]
Mn3+ + H2O ⇌ MnOH2+ + H+ –11.70 ± 0.04

Molybdenum(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):

Reaction Baes and Mesmer, 1976[48] Jolivet, 2000[49] NIST46[11] Crea et al., 2017[50]
MoO42– + H+ ⇌ HMoO4 3.89a 4.24 4.47 ± 0.02
MoO42– + 2 H+ ⇌ H2MoO4 7.50a 8.12 ± 0.03
HMoO4 + H+ ⇌ H2MoO4 4.0
Mo7O246– + H+ ⇌ HMo7O245– 4.4
HMo7O245– + H+ ⇌ H2Mo7O244– 3.5
H2Mo7O244– + H+ ⇌ H3Mo7O243– 2.5
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O 57.74a 52.99b 51.93 ± 0.04
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O 62.14a 58.90 ± 0.02
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O 65.68a 64.63 ± 0.05
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O 68.21a 68.68 ± 0.06
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O 196.3a 196a
MoO3(s) + H2O ⇌ MoO42– + 2 H+ –12.06a

Nickel(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht and Schindler, 1963[51] Baes and Messmer, 1976[52] NIST46[11] Gamsjäger et al., 2005[53] Thoenen et al., 2014[54] Brown and Ekberg, 2016[55]
Ni2+ + H2O ⇌ NiOH+ + H+ –9.86 –9.9 –9.54 ± 0.14 –9.54 ± 0.14 –9.90 ± 0.03
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+ –19 –19 < –18 –21.15 ± 0.0
Ni2+ + 3 H2O ⇌ Ni(OH)3 + 3 H+ –30 –30 –29.2 ± 1.7 –29.2 ± 1.7
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+ < –44
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+ –10.7 –10.6 ± 1.0 –10.6 ± 1.0 –10.6 ± 1.0
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+ –27.74 –27.7 –27.52 ± 0.15 –27.52 ± 0.15 –27.9 ± 0.6
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O 10.8 11.02 ± 0.20 10.96 ± 0.20

11.75 ± 0.13 (microcr)

Ni(OH)2(s) ⇌ Ni2+ + 2 OH –17.2 (inactive) –17.2 –16.97± 0.20 (β)

–17.2 ± 1.3 (cr)

Ni(OH)2(s) + OH ⇌ Ni(OH)3 –4.2 (inactive)
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O 12.38 ± 0.06 12.48 ± 0.15

Niobium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[40] Filella and May, 2020[56]
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O ~ –0.6 1.603
Nb(OH)5 + H2O ⇌ Nb(OH)6 + H+ ~ –4.8 –4.951
Nb6O198– + H+ ⇌ HNb6O197– 14.95
HNb6O197– + H+ ⇌ H2Nb6O196– 13.23
H2Nb6O196– + H+ ⇌ H3Nb6O195– 11.73
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 ~ –7.4
Nb(OH)5(am,s) ⇌ Nb(OH)5 –7.510
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 –18.31

Palladium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[57] Hummel et al., 2002[37] Kitamura and Yul, 2010[58] Brown and Ekberg, 2016[59]
Pd2+ + H2O ⇌ PdOH+ + H+ −0.96 −0.65 ± 0.64 −1.16 ± 0.30
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+ −2.6 −4 ± 1 −3.11 ± 0.63 −3.07 ± 0.16
Pd2+ + 3 H2O ⇌ Pd(OH)3 + 3 H+ −15.5 ± 1 −14.20 ± 0.63
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O −3.3 ± 1 −3.4 ± 0.2

Potassium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[40] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[60]
K+ + H2O ⇌ KOH + H+ –14.46 ± 0.4 –14.46 –14.5 ± 0.4

Radium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Nordstrom et al., 1990[7]
Ra2+ + H2O ⇌ RaOH+ + H+ –13.49

Rhodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[61] Baes and Mesmer, 1976[62] Brown and Ekberg[63]
Rh3+ + H2O ⇌ RhOH2+ + H+ ‒3.43 ‒3.4 ‒3.09 ± 0.1
Rh(OH)3(c) + OH ⇌ Rh(OH)4 ‒3.9

Scandium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[64] Brown and Ekberg, 2016[65]
Sc3+ + H2O ⇌ ScOH2+ + H+ –4.3 –4.16 ± 0.05
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+ –9.7 –9.71 ± 0.30
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+ –16.1 –16.08 ± 0.30
Sc3+ + 4 H2O ⇌ Sc(OH)4+ 4 H+ –26 –26.7 ± 0.3
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+ –6.0 –6.02 ± 0.10
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+ –16.34 –16.33 ± 0.10
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O 9.17 ± 0.30
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O 5.53 ± 0.30
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O 9.4
Sc(OH)3(c) + OH ⇌ Sc(OH)4 –3.5 ± 0.2

Selenium(–II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Olin et al., 2015[66] Thoenen et al., 2014[54]
H2Se(g) ⇌ H2Se(aq) –1.10 ± 0.01 –1.10 ± 0.01
H2Se ⇌ HSe + H+ –3.85 ± 0.05 –3.85 ± 0.05
HSe ⇌ Se2– + H+ –14.91 ± 0.20

Selenium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[67] Olin et al., 2005[66] Thoenen et al., 2014[54]
SeO32– + H+ ⇌ HSeO3 8.50 8.36 ± 0.23 8.36 ± 0.23
HSeO3 + H+ ⇌ H2SeO3 2.75 2.64 ± 0.14 2.64 ± 0.14

Selenium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[68] Olin et al., 2005[66] Thoenen et al., 2014[54]
SeO42‒ + H+ ⇌ HSeO4 1.360 1.75 ± 0.10 1.75 ± 0.10

Silicon

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[69] Thoenen et al., 2014[54]
Si(OH)4 ⇌ SiO(OH)3 + H+ –9.86 –9.81 ± 0.02
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+ –22.92 –23.14 ± 0.09
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O –13.44
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O –35.80 –36.3 ± 0.2
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 –4.0 –3.739 ± 0.087
SiO2(am) + 2 H2O ⇌ Si(OH)4 –2.714

Silver

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[70] Brown and Ekberg, 2016[71]
Ag+ + H2O ⇌ AgOH + H+ −12.0 −11.75 ± 0.14
Ag+ + 2 H2O ⇌ Ag(OH)2 + 2 H+ −24.0 −24.34 ± 0.14
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O 6.29 6.27 ± 0.05

Sodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[40] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[72]
Na+ + H2O ⇌ NaOH + H+ –14.18 ± 0.25 –14.18 –14.4 ± 0.2

Strontium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[1] Nordstrom et al., 1990[7] Brown and Ekberg, 2016[73]
Sr2+ + H2O ⇌ SrOH+ + H+ –13.29 –13.29 –13.15 ± 0.05

Titanium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969[74] Baes and Mesmer, 1976[75] Brown and Ekberg, 2016[76]
Ti3+ + H2O ⇌ TiOH2+ + H+ –1.29 –2.2 –1.65 ± 0.11
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+ –3.6 –2.64 ± 0.10

Titanium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[75] Brown and Ekberg, 2016[76]
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+ ⩽–2.3
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+ –4.8
TiO2+ + H2O ⇌ TiOOH+ + H+ –2.48 ± 0.10
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+ –5.49 ± 0.14
TiO2+ + 3 H2O ⇌ TiO(OH)3 + 3 H+ –17.4 ± 0.5
TiO(OH)2 + H2O ⇌ TiO(OH)3 + H+ –11.9 ±0.5
TiO2(c) +2 H2O ⇌ Ti(OH)4 ~ –4.8
TiO2(s) + H+ ⇌ TiOOH+ –6.06 ± 0.30
TiO2(s) + H2O ⇌ TiO(OH)2 –9.02 ± 0.02
TiO2 x H2O ⇌ Ti(OH)22+[OH]
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O –3.56 ± 0.10

Vanadium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016[47]
VO2+ + H2O ⇌ VO(OH)+ + H+ –5.30 ± 0.13
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+ –6.71 ± 0.10

Vanadium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[77] Brown and Ekberg, 2016[78]
VO2+ + 2 H2O ⇌ VO(OH)3 + H+ –3.3
VO2+ + 2 H2O ⇌ VO2(OH)2 + 2 H+ –7.3 –7.18 ± 0.12
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+ –10.7
VO2(OH)2 ⇌ VO3(OH)2– + H+ –8.55
2 VO2(OH)2 ⇌ V2O6(OH)23– + H+ + H2O –6.53
VO3(OH)2– ⇌ VO43– + H+ –14.26
2 VO3(OH)2– ⇌ V2O74– + H2O 0.56
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O 31.81
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+ –3.6
V10O27(OH)5– ⇌ V10O286– + H+ –6.15
VO2+ + H2O ⇌ VO2OH + H+ –3.25 ± 0.1
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+ –15.74 ± 0.19
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+ –30.03 ± 0.24
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+ –11.66 ± 0.53
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+ –20.91 ± 0.22
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+ –32.43 ± 0.30
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+ –20.78 ± 0.33
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+ –31.85 ± 0.26
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+ –45.85 ± 0.26
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+ –27.02 ± 0.34
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+ –10.5 ± 0.3
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+ –15.73 ± 0.33
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+ –23.90 ± 0.35
½ V2O5(c) + H+ ⇌ VO2+ + ½ H2O –0.66
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O –0.64 ± 0.09

Yttrium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[79] Brown and Ekberg, 2016[80]
Y3+ + H2O ⇌ YOH2+ + H+ –7.7 –7.77 ± 0.06
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+ (–16.4) [Estimation]
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+ (–26.0) [Estimation]
Y3+ + 4 H2O ⇌ Y(OH)4-+ 4 H+ –36.5
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+ –14.23 –14.1 ± 0.2
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+ –31.6 –32.7 ± 0.3
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O 17.5 17.32 ± 0.30

Zinc

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[81] Powell and Brown, 2013[82] Brown and Ekberg, 2016[83]
Zn2+ + H2O ⇌ ZnOH+ + H+ −8.96 −8.96 ± 0.05 −8.94 ± 0.06
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+ −16.9 –17.82 ± 0.08 −17.89 ± 0.15
Zn2+ + 3 H2O ⇌ Zn(OH)3- + 3 H+ −28.4 –28.05 ± 0.05 −27.98 ± 0.10
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+ −41.2 –40.41 ± 0.12 −40.35 ± 0.22
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+ −9.0 –7.9 ± 0.2 −7.89 ± 0.31
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+ −57.8
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O 11.14 11.12 ± 0.05 11.11 ± 0.10
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.38 ± 0.20 11.38± 0.20
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.72 ± 0.04
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.76 ± 0.04
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.70 ± 0.04
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O 11.81 ± 0.04

Zirconium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976[84] Thoenen et al., 2014[54] Brown and Ekberg, 2016[85]
Zr4+ + H2O ⇌ ZrOH3+ + H+ 0.32 0.32 ± 0.22 0.12 ± 0.12
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+ (−1.7)* 0.98 ± 1.06* −0.18 ± 0.17*
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+ (−5.1)
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+ –9.7* –2.19 ± 0.70* −4.53 ± 0.37*
Zr4+ + 5 H2O ⇌ Zr(OH)5 + 5 H+ –16.0
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+ –29± 0.70 –30.5 ± 0.3
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+ –0.6 0.4 ± 0.3 0.90 ± 0.18
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+ 3.70
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+ 12.19 ± 0.20 12.19 ± 0.20
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+ 6.0 6.52 ± 0.05 6.52 ± 0.05
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+ 12.58± 0.24
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+ 8.39± 0.80
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O –1.9* –5.37 ± 0.42*
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O –7 ± 1.6
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O –3.24± 0.10 –2.97 ± 0.18

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

References

  1. ^ a b c d Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 103.
  2. ^ Nordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
  3. ^ Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
  4. ^ Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya. 12: 1486‒ 1503, 1968.
  5. ^ Nordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
  6. ^ Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
  7. ^ a b c d e f g h i j Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.; Basset, R.L. (eds.). Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
  8. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
  9. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 95.
  10. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 111.
  11. ^ a b c d e NIST46. NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.{{cite book}}: CS1 maint: numeric names: authors list (link)
  12. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 301.
  13. ^ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi:10.1351/PAC-REP-10-08-09.
  14. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738.
  15. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210.
  16. ^ a b c Ball, J.W.; Nordstrom, D.K. (1998). "Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides". J. Chem. Eng. Data. 43: 895–918.
  17. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 220.
  18. ^ Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349.
  19. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555.
  20. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 216.
  21. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 241.
  22. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628.
  23. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632.
  24. ^ a b Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702.
  25. ^ Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 274.
  26. ^ Plyasunova, N.V.; Wang, M.; Zhang, Y.; Muhammed, M. (1997). "Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K". Hydrometalurgy. 45: 37–51.
  27. ^ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH, Cl, CO32–, SO42–, and PO43– systems". Pure Appl. Chem. 79: 895–950 – via 2007.
  28. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  29. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
  30. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 319.
  31. ^ Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
  32. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
  33. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 349.
  34. ^ Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28 – via 57–102.
  35. ^ Filella, M.; May, P.M. (2023). "The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands". Applied Geochemistry. 155: 105631.
  36. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 235.
  37. ^ a b c Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.
  38. ^ Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. Vol. 13a. OECD Nuclear Energy Agency (NEA).
  39. ^ Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
  40. ^ a b c d Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 86.
  41. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
  42. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 89.
  43. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
  44. ^ Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 181.
  45. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 226.
  46. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
  47. ^ a b Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
  48. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 256.
  49. ^ Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
  50. ^ Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids. 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
  51. ^ Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry. 6: 126–199.
  52. ^ Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 246.
  53. ^ Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
  54. ^ a b c d e f Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
  55. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
  56. ^ Filella, M.; May, P.M. (2020). "The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest". Applied Geochemistry. 122. doi:10.1016/j.apgeochem.2020.104729.
  57. ^ Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 186.
  58. ^ Kitamura, A.; Yui, M. (2010). "Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model". J. Nuclear Sci. Technol. 47: 760−770. doi:10.1080/18811248.2010.9711652.
  59. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
  60. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
  61. ^ Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 191.
  62. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 263.
  63. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 722.
  64. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 128.
  65. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
  66. ^ a b c Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.
  67. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 386.
  68. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 387.
  69. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 342.
  70. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 278.
  71. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
  72. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
  73. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
  74. ^ Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 208.
  75. ^ a b Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 151.
  76. ^ a b Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
  77. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 209.
  78. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541.
  79. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  80. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  81. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 293.
  82. ^ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Helfer, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)*". Pure and Applied Chemistry. 85: 2249–2311.
  83. ^ Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700.
  84. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 158.
  85. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.