Jump to content

Normal element: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Corrected "unitary" ->"normal"
SammyGr (talk | contribs)
Completely reworked as part of a master's thesis
Line 1: Line 1:
In [[mathematics]], an element ''x'' of a [[*-algebra]] is '''normal''' if it satisfies <math>x x^{*} = x^{*} x.</math>
In [[mathematics]], an [[Element (mathematics)|element]] of a [[*-algebra]] is called '''normal''' if it [[Commutative property|commutates]] with its {{nowrap|adjoint.{{sfn|Dixmier|1977|p=4}}}}


== Definition ==
This definition stems from the definition of a normal linear operator in [[functional analysis]], where a [[linear operator]] ''A'' from a [[Hilbert space]] into itself is called '''normal''' if <math>A A^{*} = A^{*} A,</math> where the [[adjoint operator|adjoint]] of ''A'' is ''A''{{sup|∗}} and the domain of ''A'' is the same as that of ''A''{{sup|∗}}. See [[normal operator]] for a detailed discussion. If the Hilbert space is finite-dimensional and an [[orthonormal basis]] has been chosen, then the operator ''A'' is normal if and only if the [[Matrix (mathematics)|matrix]] describing ''A'' with respect to this basis is a [[normal matrix]].

Let <math>\mathcal{A}</math> be a *-Algebra. An element <math>a \in \mathcal{A}</math> is called normal if it commutates with <math>a^*</math>, i.e. it satisfies the [[equation]] {{nowrap|<math>aa^* = a^*a</math>.}}{{sfn|Dixmier|1977|p=4}}

The [[Set (mathematics)|set]] of normal elements is denoted by <math>\mathcal{A}_N</math> or {{nowrap|<math>N(\mathcal{A})</math>.}}

A special case from particular importance is the case where <math>\mathcal{A}</math> is a [[Banach algebra#Banach *-algebras|complete normed *-algebra]], that satisfies the C*-identity (<math>\left\| a^*a \right\| = \left\| a \right\|^2 \ \forall a \in \mathcal{A}</math>), which is called a [[C*-algebra]].

== Examples ==

* Every [[Self-adjoint|self-adjoint element]] of a a *-algebra is {{nowrap|normal.{{sfn|Dixmier|1977|p=4}}}}
* Every [[unitary element]] of a a *-algebra is {{nowrap|normal.{{sfn|Dixmier|1977|p=5}}}}
* If <math>\mathcal{A}</math> is a C*-Algebra and <math>a \in \mathcal{A}_N</math> a normal element, then for every [[continuous function]] <math>f</math> on the [[Banach algebra#Spectral theory|spectrum]] of <math>a</math> the [[continuous functional calculus]] defines another normal element {{nowrap|<math>f(a)</math>.{{sfn|Dixmier|1977|p=13}}}}

== Criteria ==

Let <math>\mathcal{A}</math> be a *-algebra. Then:

* An element <math>a \in \mathcal{A}</math> is normal if and only if the *-[[subalgebra]] generated by <math>a</math>, meaning the smallest *-algebra containing <math>a</math>, is {{nowrap|commutative.{{sfn|Dixmier|1977|p=5}}}}
* Every element <math>a \in \mathcal{A}</math> can be uniquely decomposed into a [[Real and imaginary parts|real and imaginary part]], which means there exist self-adjoint elements <math>a_1,a_2 \in \mathcal{A}_{sa}</math>, such that <math>a = a_1 + \mathrm{i} a_2</math>, where <math>\mathrm{i}</math> denotes the [[imaginary unit]]. Exactly then <math>a</math> is normal if <math>a_1 a_2 = a_2 a_1</math>, i.e. real and imaginary part {{nowrap|commutate.{{sfn|Dixmier|1977|p=4}}}}

== Properties ==
=== In *-algebras ===

Let <math>a \in \mathcal{A}_N</math> be a normal element of a *-algebra {{nowrap|<math>\mathcal{A}</math>.}} Then:

* The adjoint element <math>a^*</math> is also normal, since <math>a = (a^*)^*</math> holds for the [[Involution (mathematics)|involution]] {{nowrap|*.{{sfn|Dixmier|1977|pages=3-4}}}}

=== In C*-algebras ===

Let <math>a \in \mathcal{A}_N</math> be a normal element of a C*-algebra {{nowrap|<math>\mathcal{A}</math>.}} Then:

* It is <math>\left\| a^2 \right\| = \left\| a \right\|^2</math>, since for normal elements using the C*-identity <math>\left\| a^2 \right\|^2 = \left\| (a^2) (a^2)^* \right\| = \left\| (a^*a)^* (a^*a) \right\| = \left\| a^*a \right\|^2 = \left( \left\| a \right\|^2 \right)^2</math> {{nowrap|holds.{{sfn|Werner|2018|p=518}}}}
* Every normal element is a normaloid element, i.e. the [[spectral radius]] <math>r(a)</math> equals the norm of <math>a</math>, i.e. {{nowrap|<math>r(a)= \left\| a \right\|</math>.{{sfn|Heuser|1982|p=390}}}} This follows from the [[Spectral radius#Gelfand's formula|spectral radius formula]] by repeated application of the previous property.{{sfn|Werner|2018|pages=284-285,518}}
* A continuous functional calculus can be developed which – put simply – allows the application of continuous functions on the spectrum of <math>a</math> to {{nowrap|<math>a</math>.{{sfn|Dixmier|1977|p=13}}}}


== See also ==
== See also ==


* {{annotated link|Normal operator}}
* [[Normal matrix]]
* [[Normal operator]]
* {{annotated link|Self-adjoint}}
* {{annotated link|Unitary element}}


== References ==
== Notes ==
{{reflist}}
{{reflist}}


== References ==
* {{cite book |author-link=Michael C. Reed |first=M. |last=Reed |author-link2=Barry Simon |first2=B. |last2=Simon |title=Methods of Mathematical Physics |others=Vol 2 |publisher=Academic Press |year=1972 }}
* {{cite book |last=Dixmier |first=Jacques |title=C*-algebras |publisher=North-Holland |location=Amsterdam/New York/Oxford |year=1977 |isbn=0-7204-0762-1 |translator-last=Jellett |translator-first=Francis }} English translation of {{cite book |display-authors=0 |last=Dixmier |first=Jacques |title=Les C*-algèbres et leurs représentations |language=fr |publisher=Gauthier-Villars |year=1969 }}
* {{cite book |author-link=Gerald Teschl |first=G. |last=Teschl |title=Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators |publisher=American Mathematical Society |location=Providence |year=2009 |url=https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ }}
* {{cite book |last=Heuser |first=Harro |title=Functional analysis |publisher=John Wiley & Sons Ltd. |year=1982|isbn=0-471-10069-2 |translator-last=Horvath |translator-first=John}}
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn | Schaefer | Wolff | 1999 | p=}} -->
* {{cite book |last=Werner |first=Dirk |title=Funktionalanalysis |edition=8 |language=de |publisher=Springer |year=2018 |isbn=978-3-662-55407-4 }}


{{Functional Analysis}}
{{SpectralTheory}}
{{SpectralTheory}}


{{DEFAULTSORT:Self-Adjoint}}
[[Category:Abstract algebra]]
[[Category:Abstract algebra]]
[[Category:Linear algebra]]
[[Category:C*-algebras]]


{{linear-algebra-stub}}

Revision as of 15:09, 12 January 2024

In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.[1]

Definition

Let be a *-Algebra. An element is called normal if it commutates with , i.e. it satisfies the equation .[1]

The set of normal elements is denoted by or .

A special case from particular importance is the case where is a complete normed *-algebra, that satisfies the C*-identity (), which is called a C*-algebra.

Examples

Criteria

Let be a *-algebra. Then:

  • An element is normal if and only if the *-subalgebra generated by , meaning the smallest *-algebra containing , is commutative.[2]
  • Every element can be uniquely decomposed into a real and imaginary part, which means there exist self-adjoint elements , such that , where denotes the imaginary unit. Exactly then is normal if , i.e. real and imaginary part commutate.[1]

Properties

In *-algebras

Let be a normal element of a *-algebra . Then:

  • The adjoint element is also normal, since holds for the involution *.[4]

In C*-algebras

Let be a normal element of a C*-algebra . Then:

  • It is , since for normal elements using the C*-identity holds.[5]
  • Every normal element is a normaloid element, i.e. the spectral radius equals the norm of , i.e. .[6] This follows from the spectral radius formula by repeated application of the previous property.[7]
  • A continuous functional calculus can be developed which – put simply – allows the application of continuous functions on the spectrum of to .[3]

See also

Notes

  1. ^ a b c d Dixmier 1977, p. 4.
  2. ^ a b Dixmier 1977, p. 5.
  3. ^ a b Dixmier 1977, p. 13.
  4. ^ Dixmier 1977, pp. 3–4.
  5. ^ Werner 2018, p. 518.
  6. ^ Heuser 1982, p. 390.
  7. ^ Werner 2018, pp. 284–285, 518.

References

  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2.
  • Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.