Unitary element: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Removing {{DEFAULTSORT:Self-Adjoint}} using Cold Default Sort | WP:SORTKEY
SammyGr (talk | contribs)
Complete revision as part of a master's thesis
Tag: harv-error
Line 1: Line 1:
In [[mathematics]], an element ''x'' of a [[*-algebra]] is '''unitary''' if it satisfies <math>x^* = x^{-1}.</math>
In [[mathematics]], an [[Element (mathematics)|element]] of a [[*-algebra]] is called '''unitary''' if it is [[Inverse element|invertible]] and its inverse element is the same as its adjoint {{nowrap|element.{{sfn|Dixmier|1977|p=5}}}}


== Definition ==
In [[functional analysis]], a [[linear operator]] ''A'' from a [[Hilbert space]] into itself is called '''unitary''' if it is invertible and its inverse is equal to its own [[adjoint operator|adjoint]] ''A''{{sup|∗}} and that the domain of ''A'' is the same as that of ''A''{{sup|∗}}. See [[unitary operator]] for a detailed discussion. If the Hilbert space is finite-dimensional and an [[orthonormal basis]] has been chosen, then the operator ''A'' is unitary if and only if the [[matrix (mathematics)|matrix]] describing ''A'' with respect to this basis is a [[unitary matrix]].

Let <math>\mathcal{A}</math> be a *-Algebra with [[Identity element|unit]] {{nowrap|<math>e</math>.}} An element <math>a \in \mathcal{A}</math> is called unitary if {{nowrap|<math>aa^* = a^*a = e</math>.}} In other words if <math>a</math> is invertible and <math>a^{-1} = a^*</math> {{nowrap|holds.{{sfn|Dixmier|1977|p=5}}}}

The [[Set (mathematics)|set]] of unitary elements is denoted by <math>\mathcal{A}_U</math> or {{nowrap|<math>U(\mathcal{A})</math>.}}

A special case from particular importance is the case where <math>\mathcal{A}</math> is a [[Banach algebra#Banach *-algebras|complete normed *-algebra]], that satisfies the C*-identity (<math>\left\| a^*a \right\| = \left\| a \right\|^2 \ \forall a \in \mathcal{A}</math>), which is called a [[C*-algebra]].

== Criteria ==

* Let <math>\mathcal{A}</math> be a [[Algebra over a field#Unital algebra|unital]] C*-algebra and <math>a \in \mathcal{A}_N</math> a [[Normal element|normal]] element. Exactly then is <math>a</math> unitary if the [[Banach algebra#Spectral theory|spectrum]] <math>\sigma(a)</math> consists only of elements of the [[circle group]] <math>\mathbb{T}</math>, i.e. {{nowrap|<math>\sigma(a) \subseteq \mathbb{T} = \{ \lambda \in \C \mid | \lambda | = 1 \}</math>.{{sfn|Kadison|1983|p=271}}}}

== Examples ==

* The unit <math>e</math> is {{nowrap|unitary.{{sfn|Dixmier|1977|pages=4-5}}}}

Let <math>\mathcal{A}</math> be a unital C*-algebra, then:

* Every [[Projection (mathematics)|projection]], i.e. every element <math>a \in \mathcal{A}</math> with <math>a = a^* = a^2</math>, is unitary. For the spectrum of a projection consists of at most <math>0</math> and <math>1</math>, as follows from the {{nowrap|[[continuous functional calculus]].{{sfn|Blackadar|2006|pages=57,63}}}}
* If <math>a \in \mathcal{A}_{N}</math> is a normal element of a C*-algebra <math>\mathcal{A}</math>, then for every [[continuous function]] <math>f</math> on the spectrum <math>\sigma(a)</math> the continuous functional calculus defines an unitary element <math>f(a)</math>, if {{nowrap|<math>f(\sigma(a)) \subseteq \mathbb{T}</math>.{{sfn|Kadison|1983|p=271}}}}

== Properties ==

Let <math>\mathcal{A}</math> be a unital *-algebra and {{nowrap|<math>a,b \in \mathcal{A}_U</math>.}} Then:

* The element <math>ab</math> is unitary, since {{nowrap|<math display="inline">((ab)^*)^{-1} = (b^*a^*)^{-1} = (a^*)^{-1} (b^*)^{-1} = ab</math>.}} In particular, <math>\mathcal{A}_U</math> forms a {{nowrap|[[multiplicative group]].{{sfn|Dixmier|1977|p=5}}}}
* The element <math>a</math> is {{nowrap|normal.{{sfn|Dixmier|1977|pages=4-5}}}}
* The adjoint element <math>a^*</math> is also unitary, since <math>a = (a^*)^*</math> holds for the [[Involution (mathematics)|involution]] {{nowrap|*.{{sfn|Dixmier|1977|p=5}}}}
* If <math>\mathcal{A}</math> is a C*-algebra, <math>a</math> has norm 1, i.e. {{nowrap|<math>\left\| a \right \| = 1</math>.{{sfn|Dixmier|1977|p=9}}}}


== See also ==
== See also ==


* [[Unitary matrix]]
* {{annotated link|Normal element}}
* [[Unitary operator]]
* {{annotated link|Self-adjoint}}
* {{annotated link|Unitary matrix}}


== References ==
== Notes ==
{{reflist}}
{{reflist}}


== References ==
*{{cite book |author-link=Michael C. Reed |first=M. |last=Reed |author-link2=Barry Simon |first2=B. |last2=Simon |title=Methods of Mathematical Physics |others=Vol 2 |publisher=Academic Press |year=1972 }}
*{{cite book |author-link=Gerald Teschl |first=G. |last=Teschl |title=Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators |publisher=American Mathematical Society |location=Providence |year=2009 |url=https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ }}
* {{cite book |last=Blackadar|first=Bruce |title=Operator Algebras. Theory of C*-Algebras and von Neumann Algebras |publisher=Springer |location=Berlin/Heidelberg |year=2006 |isbn=3-540-28486-9 |pages=57,63 }}
* {{cite book |last=Dixmier |first=Jacques |title=C*-algebras |publisher=North-Holland |location=Amsterdam/New York/Oxford |year=1977 |isbn=0-7204-0762-1 |translator-last=Jellett |translator-first=Francis }} English translation of {{cite book |display-authors=0 |last=Dixmier |first=Jacques |title=Les C*-algèbres et leurs représentations |language=fr |publisher=Gauthier-Villars |year=1969 }}
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn | Schaefer | Wolff | 1999 | p=}} -->
* {{cite book |last1=Kadison |first1=Richard V. |last2=Ringrose |first2=John R. |title=Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. |publisher=Academic Press |location=New York/London |year=1983 |isbn=0-12-393301-3}}


{{SpectralTheory}}
{{Functional Analysis}}


[[Category:Abstract algebra]]
[[Category:Abstract algebra]]
[[Category:Linear algebra]]
[[Category:C*-algebras]]

Revision as of 15:12, 12 January 2024

In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element.[1]

Definition

Let be a *-Algebra with unit . An element is called unitary if . In other words if is invertible and holds.[1]

The set of unitary elements is denoted by or .

A special case from particular importance is the case where is a complete normed *-algebra, that satisfies the C*-identity (), which is called a C*-algebra.

Criteria

  • Let be a unital C*-algebra and a normal element. Exactly then is unitary if the spectrum consists only of elements of the circle group , i.e. .[2]

Examples

  • The unit is unitary.[3]

Let be a unital C*-algebra, then:

  • Every projection, i.e. every element with , is unitary. For the spectrum of a projection consists of at most and , as follows from the continuous functional calculus.[4]
  • If is a normal element of a C*-algebra , then for every continuous function on the spectrum the continuous functional calculus defines an unitary element , if .[2]

Properties

Let be a unital *-algebra and . Then:

  • The element is unitary, since . In particular, forms a multiplicative group.[1]
  • The element is normal.[3]
  • The adjoint element is also unitary, since holds for the involution *.[1]
  • If is a C*-algebra, has norm 1, i.e. .[5]

See also

Notes

  1. ^ a b c d Dixmier 1977, p. 5.
  2. ^ a b Kadison 1983, p. 271.
  3. ^ a b Dixmier 1977, pp. 4–5.
  4. ^ Blackadar 2006, pp. 57, 63.
  5. ^ Dixmier 1977, p. 9.

References

  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.