Atom optics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎top: short description
old references updated, archive.org links, Meystre book added, templates
Line 1: Line 1:
{{Short description|Beams of atom matter waves with optical properties}}
{{Short description|Beams of atom matter waves with optical properties}}
'''Atom optics''' (or atomic optics) "refers to techniques to manipulate the trajectories and exploit the [[matter wave | wave]] properties of neutral atoms".<ref name="Adams Sigel Mlynek 1994 pp. 143–210">{{cite journal | last1=Adams | first1=C.S | last2=Sigel | first2=M | last3=Mlynek | first3=J | title=Atom optics | journal=Physics Reports | publisher=Elsevier BV | volume=240 | issue=3 | year=1994 | issn=0370-1573 | doi=10.1016/0370-1573(94)90066-3 | pages=143–210| doi-access=free }}</ref> Typical experiments employ beams of cold, slowly moving neutral [[atoms]], as a special case of a [[particle beam]]. Like an [[optics | optical]] beam, the atomic beam may exhibit [[diffraction]] and [[Interference (wave propagation)|interference]], and can be focused with a Fresnel [[zone plate]]<ref name="doak">{{cite journal
'''Atom optics''' (or atomic optics) "refers to techniques to manipulate the trajectories and exploit the [[matter wave | wave]] properties
of neutral atoms".<ref name="Adams Sigel Mlynek 1994 pp. 143–210">{{cite journal | last1=Adams | first1=C.S | last2=Sigel | first2=M | last3=Mlynek | first3=J | title=Atom optics | journal=Physics Reports | publisher=Elsevier BV | volume=240 | issue=3 | year=1994 | issn=0370-1573 | doi=10.1016/0370-1573(94)90066-3 | pages=143–210| doi-access=free }}</ref> Typical experiments employ beams of cold, slowly moving neutral [[atoms]], as a special case of a [[particle beam]].
Like an [[optics | optical]] beam, the atomic beam may exhibit [[diffraction]] and [[Interference (wave propagation)|interference]], and can be focused with a Fresnel [[zone plate]]<ref name="doak">{{cite journal
|url=http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/nano-structures/fesnell%20zone%20plates/DGR99.pdf
|url=http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/nano-structures/fesnell%20zone%20plates/DGR99.pdf
|archive-url=https://web.archive.org/web/20110929071400/http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/nano-structures/fesnell%20zone%20plates/DGR99.pdf
|archive-date=2011-09-29
|access-date=12 March 2024
|author=R.B.Doak
|author=R.B.Doak
|author2=R.E.Grisenti
|author2=R.E.Grisenti
Line 19: Line 20:
|bibcode=1999PhRvL..83.4229D
|bibcode=1999PhRvL..83.4229D
|url-status=dead
|url-status=dead
|archive-url=https://web.archive.org/web/20110719220914/http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/nano-structures/fesnell%20zone%20plates/DGR99.pdf
|archive-date=2011-07-19
}}</ref> or a concave [[atomic mirror]].<ref name="ccccccc">{{cite journal
}}</ref> or a concave [[atomic mirror]].<ref name="ccccccc">{{cite journal
| author= J.J.Berkhout |author2=O.J.Luiten |author3=I.D.Setija |author4=T.W.Hijmans |author5=T.Mizusaki |author6=J.T.M.Walraven
| author= J.J.Berkhout |author2=O.J.Luiten |author3=I.D.Setija |author4=T.W.Hijmans |author5=T.Mizusaki |author6=J.T.M.Walraven
Line 53: Line 52:
|archive-url=https://web.archive.org/web/20110719220930/http://www.atomwave.org/rmparticle/RMPLAO.pdf
|archive-url=https://web.archive.org/web/20110719220930/http://www.atomwave.org/rmparticle/RMPLAO.pdf
|archive-date=2011-07-19
|archive-date=2011-07-19
}}</ref> More bibliography about Atom Optics can be found at the Resource Letter.<ref>{{Cite journal | last1 = Rohwedder | first1 = B. | title = Resource Letter AON-1: Atom optics, a tool for nanofabrication | doi = 10.1119/1.2673209 | journal = American Journal of Physics | volume = 75 | issue = 5 | pages = 394–406 | year = 2007 |bibcode = 2007AmJPh..75..394R }}</ref> For quantum atom optics see the 2018 review by Pezzè Smerzi Oberthaler Schmied. <ref name="Pezzè Smerzi Oberthaler Schmied 2018 p. ">{{cite journal | last1=Pezzè | first1=Luca | last2=Smerzi | first2=Augusto | last3=Oberthaler | first3=Markus K. | last4=Schmied | first4=Roman | last5=Treutlein | first5=Philipp | title=Quantum metrology with nonclassical states of atomic ensembles | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=90 | issue=3 | date=2018-09-05 | issn=0034-6861 | doi=10.1103/revmodphys.90.035005 | page=035005| arxiv=1609.01609 | s2cid=119250709 }}</ref>
}}</ref> More bibliography about Atom Optics can be found in the 2017 Resource Letter in the [[American Journal of Physics]].<ref>{{Cite journal | last1 = Rohwedder | first1 = B. | title = Resource Letter AON-1: Atom optics, a tool for nanofabrication | doi = 10.1119/1.2673209 | journal = American Journal of Physics | volume = 75 | issue = 5 | pages = 394–406 | year = 2007 |bibcode = 2007AmJPh..75..394R }}</ref> For quantum atom optics see the 2018 review by Pezzè [[Et al.|et al.]]<ref name="Pezzè Smerzi Oberthaler Schmied 2018 p. ">{{cite journal | last1=Pezzè | first1=Luca | last2=Smerzi | first2=Augusto | last3=Oberthaler | first3=Markus K. | last4=Schmied | first4=Roman | last5=Treutlein | first5=Philipp | title=Quantum metrology with nonclassical states of atomic ensembles | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=90 | issue=3 | date=2018-09-05 | issn=0034-6861 | doi=10.1103/revmodphys.90.035005 | page=035005| arxiv=1609.01609 | s2cid=119250709 }}</ref>


==History==
==History==
Interference of atom [[matter wave |matter waves]] was first observed by Esterman and [[Otto Stern |Stern]] in 1930, when a Na beam was diffracted off a surface of NaCl.<ref>{{cite journal | last1 = Estermann | first1 = I. | author-link2 = Otto Stern | last2 = Stern | first2 = Otto | year = 1930 | title = Beugung von Molekularstrahlen| journal = Z. Phys. | volume = 61 | issue = 1–2| page = 95 | doi=10.1007/bf01340293|bibcode = 1930ZPhy...61...95E | s2cid = 121757478 }}</ref> The short de Broglie wavelength of atoms prevented progress for many years until two technological breakthroughs revived interest: [[microlithography]] allowing precise small devices and [[laser cooling]] allowing atoms to be slowed, increasing their [[matter wave|de Broglie wavelength]].<ref name="Adams Sigel Mlynek 1994 pp. 143–210"></ref>
Interference of atom [[matter wave |matter waves]] was first observed by Esterman and [[Otto Stern |Stern]] in 1930, when a Na beam was diffracted off a surface of NaCl.<ref>{{cite journal | last1 = Estermann | first1 = I. | author-link2 = Otto Stern | last2 = Stern | first2 = Otto | year = 1930 | title = Beugung von Molekularstrahlen| journal = Z. Phys. | volume = 61 | issue = 1–2| page = 95 | doi=10.1007/bf01340293|bibcode = 1930ZPhy...61...95E | s2cid = 121757478 }}</ref> The short [[de Broglie wavelength]] (length of the matter wave) of atoms prevented progress for many years until two technological breakthroughs revived interest: [[microlithography]] allowing precise small devices and [[laser cooling]] allowing atoms to be slowed, increasing their de Broglie wavelength.<ref name="Adams Sigel Mlynek 1994 pp. 143–210"></ref>


Until 2006, the resolution of imaging systems based on atomic beams was not better than that of an optical [[microscope]], mainly due to the poor performance of the focusing elements. Such elements use small [[numerical aperture]]; usually, atomic mirrors use [[angle of incidence (optics)|grazing incidence]], and the reflectivity drops drastically with increase of the grazing angle; for efficient normal reflection, atoms should be [[ultracold atom|ultracold]], and dealing with such atoms usually involves [[Magnetic trap (atoms)|magnetic]], [[magneto-optical trap|magneto-optical]] or [[Optical tweezers|optical]] traps.
Until 2006, the resolution of imaging systems based on atomic beams was not better than that of an optical [[microscope]],
mainly due to the poor performance of the focusing elements. Such elements use small [[numerical aperture]];
usually, atomic mirrors use [[angle of incidence (optics)|grazing incidence]], and the reflectivity drops drastically with increase of the
grazing angle; for efficient normal reflection, atoms should be [[ultracold atom|ultracold]], and
dealing with such atoms usually involves [[Magnetic trap (atoms)|magnetic]], [[magneto-optical trap|magneto-optical]] or [[Optical tweezers|optical]] traps.


At the beginning of the 21st century scientific publications about "atom nano-optics", [[evanescent field]] lenses<ref>{{Cite journal |first1=Victor |last1=Balykin |first2=Vasili |last2=Klimov |first3=Vlasilen |last3=Letokhov |title=Atom Nano-Optics |journal=[[Optics and Photonics News]] |date=March 2005 |pages=44-48 |url=https://www.optica-opn.org/home/articles/volume_16/issue_3/features/atom_nano-optics/}}</ref> and [[ridged mirror]]s<ref name="fres">{{cite journal
Recent scientific publications about Atom Nano-Optics, [[evanescent field]] lenses<ref>
|url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000094000001013203000001&idtype=cvips&gifs=yes
V.Balykin, V.Klimov, and V.Letokhov. [[Optics and Photonics News]], March 2005, p.44-48;
http://www.osa-opn.org/abstract.cfm?URI=OPN-16-3-44{{dead link|date=October 2016 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
and [[ridged mirror]]s<ref name="fres">{{cite journal
| url=http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000094000001013203000001&idtype=cvips&gifs=yes
| author= H.Oberst |author2=D.Kouznetsov |author3=K.Shimizu |author4=J.Fujita |author5=F. Shimizu
| author= H.Oberst |author2=D.Kouznetsov |author3=K.Shimizu |author4=J.Fujita |author5=F. Shimizu
| title=Fresnel Diffraction Mirror for an Atomic Wave
| title=Fresnel Diffraction Mirror for an Atomic Wave
Line 91: Line 83:
| doi=10.1088/0953-4075/39/7/005
| doi=10.1088/0953-4075/39/7/005
|bibcode = 2006JPhB...39.1605K | citeseerx= 10.1.1.172.7872 | s2cid= 16653364 }}</ref>
|bibcode = 2006JPhB...39.1605K | citeseerx= 10.1.1.172.7872 | s2cid= 16653364 }}</ref>
show significant improvement since the beginning of the 21st century. In particular, an
showed significant improvement.
<ref>{{Cite journal |first = Schmidt-Kaler | last = F |author2=T Pfau |author3=P Schmelcher |author4=W Schleich | year = 2010 | title = Focus on Atom Optics and its Applications | journal = [[New Journal of Physics]] | volume = 12 | issue = 6| pages = 065014| doi = 10.1088/1367-2630/12/6/065014 |bibcode = 2010NJPh...12f5014S | doi-access = free}}</ref> In particular, an
[[atomic hologram]] can be realized.<ref name="holo">{{cite journal
[[atomic hologram]] can be realized.<ref name="holo">{{cite journal
| author = Shimizu
| author = Shimizu
Line 103: Line 96:
| bibcode=2002PhRvL..88l3201S
| bibcode=2002PhRvL..88l3201S
}}</ref>
}}</ref>




==See also==
==See also==
* [[Atom interferometer]]
* [[Atomic nanoscope]]
* [[Atomic nanoscope]]
* [[Electron microscope]]
* [[Electron microscope]]
* [[Quantum reflection]]
* [[Quantum reflection]]

* [[Atom interferometer]]
==External links==
* {{Cite web |archive-url=https://web.archive.org/web/20151109152922/http://atomwave.org/ |archive-date=2015-11-09 |url=http://atomwave.org/ |title=Atomwave.org, RMP Article, Cronin Group Research, Atomic and Optical Science Researchers at the University of Arizona |website=atomwave.org |access-date=12 March 2024 |publisher=University of Arizona |url-status=unfit}}. Former website of the Arizona research group.


==References==
==References==
<references/>
<references/>
===Books===

*{{Cite book |first=Pierre |last=Meystre |author-link= |title=Atom Optics |date=2001 |publisher=AIP Press/Springer |series=Springer series on atomic, optical, and plasma physics, 33 |location=New York |isbn=0387952748 |oclc=45962873}} {{ASIN|0387952748}}
*Atomic and Optical Science Researchers at the University of Arizona: http://www.atomwave.org.
*{{Cite book |first=Pierre |last=Meystre |title=Quantum Optics Taming the Quantum |publisher=Springer International Publishing, Cham |date=2021 |doi=10.1007/978-3-030-76183-7|ISBN=9783030761837 |OCLC=1346683874 |series=Graduate Texts in Physics |url=https://link.springer.com/book/10.1007/978-3-030-76183-7}}
*[[Pierre Meystre]]. ''Atom Optics'' {{ASIN|0387952748}}
*{{ cite journal |first = Schmidt-Kaler | last = F |author2=T Pfau |author3=P Schmelcher |author4=W Schleich | year = 2010 | title = Focus on Atom Optics and its Applications | journal = [[New Journal of Physics]] | volume = 12 | issue = 6| pages = 065014| doi = 10.1088/1367-2630/12/6/065014 |bibcode = 2010NJPh...12f5014S | doi-access = free }}


{{DEFAULTSORT:Atom Optics}}
{{DEFAULTSORT:Atom Optics}}
[[Category:Atomic, molecular, and optical physics]]
[[Category:Atomic, molecular, and optical physics]]



{{atomic-physics-stub}}
{{atomic-physics-stub}}

Revision as of 09:36, 12 March 2024

Atom optics (or atomic optics) "refers to techniques to manipulate the trajectories and exploit the wave properties of neutral atoms".[1] Typical experiments employ beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate[2] or a concave atomic mirror.[3]

For comprehensive overviews of atom optics, see the 1994 review by Adams, Sigel, and Mlynek[1] or the 2009 review by Cronin, Jörg, and Pritchard.[4] More bibliography about Atom Optics can be found in the 2017 Resource Letter in the American Journal of Physics.[5] For quantum atom optics see the 2018 review by Pezzè et al.[6]

History

Interference of atom matter waves was first observed by Esterman and Stern in 1930, when a Na beam was diffracted off a surface of NaCl.[7] The short de Broglie wavelength (length of the matter wave) of atoms prevented progress for many years until two technological breakthroughs revived interest: microlithography allowing precise small devices and laser cooling allowing atoms to be slowed, increasing their de Broglie wavelength.[1]

Until 2006, the resolution of imaging systems based on atomic beams was not better than that of an optical microscope, mainly due to the poor performance of the focusing elements. Such elements use small numerical aperture; usually, atomic mirrors use grazing incidence, and the reflectivity drops drastically with increase of the grazing angle; for efficient normal reflection, atoms should be ultracold, and dealing with such atoms usually involves magnetic, magneto-optical or optical traps.

At the beginning of the 21st century scientific publications about "atom nano-optics", evanescent field lenses[8] and ridged mirrors[9][10] showed significant improvement. [11] In particular, an atomic hologram can be realized.[12]

See also

External links

  • "Atomwave.org, RMP Article, Cronin Group Research, Atomic and Optical Science Researchers at the University of Arizona". atomwave.org. University of Arizona. Archived from the original on 2015-11-09. Retrieved 12 March 2024.{{cite web}}: CS1 maint: unfit URL (link). Former website of the Arizona research group.

References

  1. ^ a b c Adams, C.S; Sigel, M; Mlynek, J (1994). "Atom optics". Physics Reports. 240 (3). Elsevier BV: 143–210. doi:10.1016/0370-1573(94)90066-3. ISSN 0370-1573.
  2. ^ R.B.Doak; R.E.Grisenti; S.Rehbein; G.Schmahl; J.P.Toennies; Ch. Wöll (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates" (PDF). Physical Review Letters. 83 (21): 4229–4232. Bibcode:1999PhRvL..83.4229D. doi:10.1103/PhysRevLett.83.4229. Archived from the original (PDF) on 2011-09-29. Retrieved 12 March 2024.
  3. ^ J.J.Berkhout; O.J.Luiten; I.D.Setija; T.W.Hijmans; T.Mizusaki; J.T.M.Walraven (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror" (PDF). Physical Review Letters. 63 (16): 1689–1692. Bibcode:1989PhRvL..63.1689B. doi:10.1103/PhysRevLett.63.1689. PMID 10040645.
  4. ^ Cronin, Alexander D.; Jörg Schmiedmayer; David E. Pritchard (2009). "Optics and interferometry with atoms and molecules" (PDF). Reviews of Modern Physics. 81 (3): 1051. arXiv:0712.3703. Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. hdl:1721.1/52372. S2CID 28009912. Archived from the original (PDF) on 2011-07-19.
  5. ^ Rohwedder, B. (2007). "Resource Letter AON-1: Atom optics, a tool for nanofabrication". American Journal of Physics. 75 (5): 394–406. Bibcode:2007AmJPh..75..394R. doi:10.1119/1.2673209.
  6. ^ Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (2018-09-05). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics. 90 (3). American Physical Society (APS): 035005. arXiv:1609.01609. doi:10.1103/revmodphys.90.035005. ISSN 0034-6861. S2CID 119250709.
  7. ^ Estermann, I.; Stern, Otto (1930). "Beugung von Molekularstrahlen". Z. Phys. 61 (1–2): 95. Bibcode:1930ZPhy...61...95E. doi:10.1007/bf01340293. S2CID 121757478.
  8. ^ Balykin, Victor; Klimov, Vasili; Letokhov, Vlasilen (March 2005). "Atom Nano-Optics". Optics and Photonics News: 44–48.
  9. ^ H.Oberst; D.Kouznetsov; K.Shimizu; J.Fujita; F. Shimizu (2005). "Fresnel Diffraction Mirror for an Atomic Wave". Physical Review Letters. 94 (1): 013203. Bibcode:2005PhRvL..94a3203O. doi:10.1103/PhysRevLett.94.013203. hdl:2241/104208. PMID 15698079.
  10. ^ D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B. 39 (7): 1605–1623. Bibcode:2006JPhB...39.1605K. CiteSeerX 10.1.1.172.7872. doi:10.1088/0953-4075/39/7/005. S2CID 16653364.
  11. ^ F, Schmidt-Kaler; T Pfau; P Schmelcher; W Schleich (2010). "Focus on Atom Optics and its Applications". New Journal of Physics. 12 (6): 065014. Bibcode:2010NJPh...12f5014S. doi:10.1088/1367-2630/12/6/065014.
  12. ^ Shimizu; J. Fujita (2002). "Reflection-Type Hologram for Atoms". Physical Review Letters. 88 (12): 123201. Bibcode:2002PhRvL..88l3201S. doi:10.1103/PhysRevLett.88.123201. PMID 11909457.

Books