Blum Blum Shub: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Example: check for loop
→‎Security: Sidorenko & Schoenmakers 2005
Line 24: Line 24:
==Security==
==Security==
There is a proof reducing its security to the [[Computational complexity theory|computational difficulty]] of factoring.{{sfn|Blum|Blum|Shub|1986|pp=364–383}} When the primes are chosen appropriately, and [[big O notation|''O'']]([[logarithm|log]] log ''M'') lower-order bits of each ''x<sub>n</sub>'' are output, then in the limit as ''M'' grows large, distinguishing the output bits from random should be at least as difficult as solving the [[quadratic residuosity problem]] modulo ''M''.
There is a proof reducing its security to the [[Computational complexity theory|computational difficulty]] of factoring.{{sfn|Blum|Blum|Shub|1986|pp=364–383}} When the primes are chosen appropriately, and [[big O notation|''O'']]([[logarithm|log]] log ''M'') lower-order bits of each ''x<sub>n</sub>'' are output, then in the limit as ''M'' grows large, distinguishing the output bits from random should be at least as difficult as solving the [[quadratic residuosity problem]] modulo ''M''.

The performance of the BBS random-number generator depends on the size of the modulus ''M'' and the number of bits per iteration ''j''. While lowering ''M'' or increasing ''j'' makes the algorithm faster, doing so also reduces the security. A 2005 paper gives concrete, as opposed to asymptotic, security proof of BBS, for a given ''M'' and ''j''. The result can also be used to guide choices of the two numbers by balancing expected security against computational cost.<ref>{{cite journal |last1=Sidorenko |first1=Andrey |last2=Schoenmakers |first2=Berry |title=Concrete Security of the Blum-Blum-Shub Pseudorandom Generator |journal=Cryptography and Coding |date=2005 |volume=3796 |pages=355–375 |doi=10.1007/11586821_24}}</ref>


==Example==
==Example==

Revision as of 06:03, 27 March 2024

Blum Blum Shub (B.B.S.) is a pseudorandom number generator proposed in 1986 by Lenore Blum, Manuel Blum and Michael Shub[1] that is derived from Michael O. Rabin's one-way function.

Blum Blum Shub takes the form

,

where M = pq is the product of two large primes p and q. At each step of the algorithm, some output is derived from xn+1; the output is commonly either the bit parity of xn+1 or one or more of the least significant bits of xn+1.

The seed x0 should be an integer that is co-prime to M (i.e. p and q are not factors of x0) and not 1 or 0.

The two primes, p and q, should both be congruent to 3 (mod 4) (this guarantees that each quadratic residue has one square root which is also a quadratic residue), and should be safe primes with a small gcd((p-3)/2, (q-3)/2) (this makes the cycle length large).

An interesting characteristic of the Blum Blum Shub generator is the possibility to calculate any xi value directly (via Euler's theorem):

,

where is the Carmichael function. (Here we have ).

Security

There is a proof reducing its security to the computational difficulty of factoring.[1] When the primes are chosen appropriately, and O(log log M) lower-order bits of each xn are output, then in the limit as M grows large, distinguishing the output bits from random should be at least as difficult as solving the quadratic residuosity problem modulo M.

The performance of the BBS random-number generator depends on the size of the modulus M and the number of bits per iteration j. While lowering M or increasing j makes the algorithm faster, doing so also reduces the security. A 2005 paper gives concrete, as opposed to asymptotic, security proof of BBS, for a given M and j. The result can also be used to guide choices of the two numbers by balancing expected security against computational cost.[2]

Example

Let , and (where is the seed). We can expect to get a large cycle length for those small numbers, because . The generator starts to evaluate by using and creates the sequence , , , = 9, 81, 236, 36, 31, 202. The following table shows the output (in bits) for the different bit selection methods used to determine the output.

Parity bit Least significant bit
0 1 1 0 1 0 1 1 0 0 1 0

The following is a Python implementation that does check for primality.

import sympy
def blum_blum_shub(p1, p2, seed, iterations):
  assert p1 % 4 == 3
  assert p2 % 4 == 3
  assert sympy.isprime(p1//2)
  assert sympy.isprime(p2//2)
  n = p1 * p2
  numbers = []
  for _ in range(iterations):
    seed = (seed ** 2) % n
    if seed in numbers:
      print(f"The RNG has fallen into a loop at {len(numbers)} steps")
      return numbers
    numbers.append(seed)
  return numbers

print(blum_blum_shub(11, 23, 3, 100))

The following Common Lisp implementation provides a simple demonstration of the generator, in particular regarding the three bit selection methods. It is important to note that the requirements imposed upon the parameters p, q and s (seed) are not checked.

(defun get-number-of-1-bits (bits)
  "Returns the number of 1-valued bits in the integer-encoded BITS."
  (declare (type (integer 0 *) bits))
  (the (integer 0 *) (logcount bits)))

(defun get-even-parity-bit (bits)
  "Returns the even parity bit of the integer-encoded BITS."
  (declare (type (integer 0 *) bits))
  (the bit (mod (get-number-of-1-bits bits) 2)))

(defun get-least-significant-bit (bits)
  "Returns the least significant bit of the integer-encoded BITS."
  (declare (type (integer 0 *) bits))
  (the bit (ldb (byte 1 0) bits)))

(defun make-blum-blum-shub (&key (p 11) (q 23) (s 3))
  "Returns a function of no arguments which represents a simple
   Blum-Blum-Shub pseudorandom number generator, configured to use the
   generator parameters P, Q, and S (seed), and returning three values:
   (1) the number x[n+1],
   (2) the even parity bit of the number,
   (3) the least significant bit of the number.
   ---
   Please note that the parameters P, Q, and S are not checked in
   accordance to the conditions described in the article."
  (declare (type (integer 0 *) p q s))
  (let ((M    (* p q))       ;; M  = p * q
        (x[n] s))            ;; x0 = seed
    (declare (type (integer 0 *) M x[n]))
    #'(lambda ()
        ;; x[n+1] = x[n]^2 mod M
        (let ((x[n+1] (mod (* x[n] x[n]) M)))
          (declare (type (integer 0 *) x[n+1]))
          ;; Compute the random bit(s) based on x[n+1].
          (let ((even-parity-bit       (get-even-parity-bit       x[n+1]))
                (least-significant-bit (get-least-significant-bit x[n+1])))
            (declare (type bit even-parity-bit))
            (declare (type bit least-significant-bit))
            ;; Update the state such that x[n+1] becomes the new x[n].
            (setf x[n] x[n+1])
            (values x[n+1]
                    even-parity-bit
                    least-significant-bit))))))

;; Print the exemplary outputs.
(let ((bbs (make-blum-blum-shub :p 11 :q 23 :s 3)))
  (declare (type (function () (values (integer 0 *) bit bit)) bbs))
  (format T "~&Keys: E = even parity, L = least significant")
  (format T "~2%")
  (format T "~&x[n+1] | E | L")
  (format T "~&--------------")
  (loop repeat 6 do
    (multiple-value-bind (x[n+1] even-parity-bit least-significant-bit)
        (funcall bbs)
      (declare (type (integer 0 *) x[n+1]))
      (declare (type bit           even-parity-bit))
      (declare (type bit           least-significant-bit))
      (format T "~&~6d | ~d | ~d"
                x[n+1] even-parity-bit least-significant-bit))))

References

Citations

  1. ^ a b Blum, Blum & Shub 1986, pp. 364–383.
  2. ^ Sidorenko, Andrey; Schoenmakers, Berry (2005). "Concrete Security of the Blum-Blum-Shub Pseudorandom Generator". Cryptography and Coding. 3796: 355–375. doi:10.1007/11586821_24.

Sources

External links