Jump to content

Metasymplectic space: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m top: some ce
Citation bot (talk | contribs)
Altered title. Added isbn. | Use this bot. Report bugs. | Suggested by Awkwafaba | #UCB_webform 68/1000
 
Line 5: Line 5:


*{{Citation | last1=Freudenthal | first1=Hans | author1-link=Hans Freudenthal | title=Beziehungen der E7 und E8 zur Oktavenebene. VIII-IX. | language=German | year=1959 | journal=Nederlandse Akademie van Wetenschappen. Proceedings. Series A. | volume=62 | pages=447–465}}
*{{Citation | last1=Freudenthal | first1=Hans | author1-link=Hans Freudenthal | title=Beziehungen der E7 und E8 zur Oktavenebene. VIII-IX. | language=German | year=1959 | journal=Nederlandse Akademie van Wetenschappen. Proceedings. Series A. | volume=62 | pages=447–465}}
*{{Citation | last1=Tits | first1=Jacques | title=Buildings of spherical type and finite BN-pairs | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | doi=10.1007/978-3-540-38349-9 |mr=0470099 | year=1974 | volume=386}}
*{{Citation | last1=Tits | first1=Jacques | title=Buildings of Spherical Type and Finite BN-Pairs | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | doi=10.1007/978-3-540-38349-9 |mr=0470099 | year=1974 | volume=386| isbn=978-3-540-06757-3 }}


[[Category:Incidence geometry]]
[[Category:Incidence geometry]]

Latest revision as of 21:44, 19 August 2024

In mathematics, a metasymplectic space, introduced by Freudenthal (1959) and Tits (1974, 10.13), is a Tits building of type F4 (a specific generalized incidence structure). The four types of vertices are called points, lines, planes, and symplecta.

References

[edit]
  • Freudenthal, Hans (1959), "Beziehungen der E7 und E8 zur Oktavenebene. VIII-IX.", Nederlandse Akademie van Wetenschappen. Proceedings. Series A. (in German), 62: 447–465
  • Tits, Jacques (1974), Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, vol. 386, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-540-38349-9, ISBN 978-3-540-06757-3, MR 0470099