Superstripes: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m ISBNs (Build KE)
m Format plain DOIs using AWB (8073)
Line 3: Line 3:
</ref><ref name="mullertris"> Müller, K. A. Essential Heterogeneities in Hole-Doped Cuprate Superconductors, vol. 114/2005 of Structure & Bonding, 1-11 (Springer, Berlin / Heidelberg, 2005). URL http://dx.doi.org/10.1007/b101015
</ref><ref name="mullertris"> Müller, K. A. Essential Heterogeneities in Hole-Doped Cuprate Superconductors, vol. 114/2005 of Structure & Bonding, 1-11 (Springer, Berlin / Heidelberg, 2005). URL http://dx.doi.org/10.1007/b101015
</ref><ref name="raveau">Raveau, B. The perovskite history: More than 60 years of research from the discovery of ferroelectricity to colossal magnetoresistance via high tc superconductivity. Progress in Solid State Chemistry 35, 171-173 (2007). URL http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001.
</ref><ref name="raveau">Raveau, B. The perovskite history: More than 60 years of research from the discovery of ferroelectricity to colossal magnetoresistance via high tc superconductivity. Progress in Solid State Chemistry 35, 171-173 (2007). URL http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001.
</ref><ref name ="bishop">Bishop, A. R. High Tc oxides: a collusion of spin, charge and lattice. Journal of Physics: Conference Series 108, 012027+ (2008). URL http://dx.doi.org/10.1088/1742-6596/108/1/012027
</ref><ref name ="bishop">Bishop, A. R. High Tc oxides: a collusion of spin, charge and lattice. Journal of Physics: Conference Series 108, 012027+ (2008). {{doi|10.1088/1742-6596/108/1/012027}}
</ref><ref name="LAcao4">Di Castro, D., Colapietro, M. & Bianconi, G. Metallic stripes in oxygen doped La2CuO4.1 Int. J. Mod. Phys. 14, 3438-3443 (2000). URL http://dx.doi.org/doi:10.1142/S0217979200003927.
</ref><ref name="LAcao4">Di Castro, D., Colapietro, M. & Bianconi, G. Metallic stripes in oxygen doped La2CuO4.1 Int. J. Mod. Phys. 14, 3438-3443 (2000). {{doi|10.1142/S0217979200003927}}.
</ref><ref name="Superstripes">Saini, N. L. & Bianconi, A. '''Superstripes by anomalous x-ray diffraction and angle resolved photoemission in Bi2212'''. International Journal of Modern Physics B 14, 3649-3655 (2000). URL http://dx.doi.org/10.1142/S0217979200004179.
</ref><ref name="Superstripes">Saini, N. L. & Bianconi, A. '''Superstripes by anomalous x-ray diffraction and angle resolved photoemission in Bi2212'''. International Journal of Modern Physics B 14, 3649-3655 (2000). {{doi|10.1142/S0217979200004179}}.
</ref><ref name="Superstripes2">Bianconi, A., Di Castro, D., Saini, N. L. & Bianconi, G. Superstripes (self organization of quantum wires in high tc superconductors). In Thorpe, M. F. & Phillips, J. C. (eds.) Phase Transitions and Self-Organization in Electronic and Molecular Networks, Fundamental Materials Research, chap. 24, 375-388 (Kluwer Academic Publishers, Boston, 2002). URL http://dx.doi.org/10.1007/0-306-47113-2_24.
</ref><ref name="Superstripes2">Bianconi, A., Di Castro, D., Saini, N. L. & Bianconi, G. Superstripes (self organization of quantum wires in high tc superconductors). In Thorpe, M. F. & Phillips, J. C. (eds.) Phase Transitions and Self-Organization in Electronic and Molecular Networks, Fundamental Materials Research, chap. 24, 375-388 (Kluwer Academic Publishers, Boston, 2002). {{doi|10.1007/0-306-47113-2_24}}.
</ref><ref name="Misfit">Poccia, N. & Fratini, M. The misfit strain critical point in the 3d phase diagrams of cuprates. Journal of Superconductivity and Novel Magnetism 22, 299-303 (2009). URL http://dx.doi.org/10.1007/s10948-008-0435-8.
</ref><ref name="Misfit">Poccia, N. & Fratini, M. The misfit strain critical point in the 3d phase diagrams of cuprates. Journal of Superconductivity and Novel Magnetism 22, 299-303 (2009). {{doi|10.1007/s10948-008-0435-8}}.
</ref>.
</ref>.
The '''superstripes''' show multiple superconducting gaps, i.e. different order parameters of the off diagonal superconducting order, therefore these materials are a particular case of the called '''two-band''' superconductor or '''multiband''' superconductor or '''two-gap''' superconductor, or multigap superconductor. A key particular feature of superstripes is that the different gaps are not only different in different portions of the k-space but also in different portions of the superlattice in the real space.
The '''superstripes''' show multiple superconducting gaps, i.e. different order parameters of the off diagonal superconducting order, therefore these materials are a particular case of the called '''two-band''' superconductor or '''multiband''' superconductor or '''two-gap''' superconductor, or multigap superconductor. A key particular feature of superstripes is that the different gaps are not only different in different portions of the k-space but also in different portions of the superlattice in the real space.


==History==
==History==
The name Superstripes was introduced in 1999 for describing the intrinsic structural feature of materials showing [[High-temperature superconductivity]]: the structural modulation that coexists and favors high temperature superconductivity <ref name="Bianconi">Bianconi, A. '''Superstripes''', International Journal of Modern Physics B 14, 3289-3297 (2000). URL http://dx.doi.org/10.1142/S0217979200003769.</ref>
The name Superstripes was introduced in 1999 for describing the intrinsic structural feature of materials showing [[High-temperature superconductivity]]: the structural modulation that coexists and favors high temperature superconductivity <ref name="Bianconi">Bianconi, A. '''Superstripes''', International Journal of Modern Physics B 14, 3289-3297 (2000). {{doi|10.1142/S0217979200003769}}.</ref>


==High temperature superconductivity in superstripes==
==High temperature superconductivity in superstripes==

Revision as of 06:55, 13 June 2012

Superstripes are metallic heterostructures at the atomic limit where the shape resonance in the energy gap parameters ∆n[1][2][3] is the driving mechanism for the amplification of the superconductivity critical temperature. These particular heterostructures at atomic limit are formed by a metallic superlattice of superconducting units (layers, or stripes, or wires, or spheres or balls) separated by an intercalated material as in cuprate materials[4][5][6][7][8][9][10][11]. The superstripes show multiple superconducting gaps, i.e. different order parameters of the off diagonal superconducting order, therefore these materials are a particular case of the called two-band superconductor or multiband superconductor or two-gap superconductor, or multigap superconductor. A key particular feature of superstripes is that the different gaps are not only different in different portions of the k-space but also in different portions of the superlattice in the real space.

History

The name Superstripes was introduced in 1999 for describing the intrinsic structural feature of materials showing High-temperature superconductivity: the structural modulation that coexists and favors high temperature superconductivity [1]

High temperature superconductivity in superstripes

The prediction of high temperature superconductivity transition temperatures is rightly considered to be one of the most difficult problems in theoretical physics. The High Temperature Superconductivity in Superstripes is driven by a quantum mechanism that rises the critical temperature: a quantum interference effect in the Interband Pairing, that is a resonance in the exchange-like pair transfer between different condensates, providing a single critical temperature Tc. The quantum configuration interaction between different pairing channels is a particular case of shape resonance belonging to the group of Fano Feshbach resonances in atomic and nuclear physics. The quantum resonance is switched on when the chemical potential is tuned at an "electronic topological transition" (ETT) where one of the Fermi surfaces of the subbands appears or changes its dimensionality. The tuning of the chemical potential at the shape resonance can be obtained by changing: the charge density and/or the superlattice structural parameters, and/or the superlattice misfit strain and/or the disorder.

Materials

The particular realizations of this type of unconventional superconductor made of superstripes are the cuprate materials made of cupric oxide layers intercalated by block layers, the magnesium diboride materials made of boron layers intercalated by Magnesium/Aluminium/Scandium layers and the oxypnictide materials made of iron arsenide layers intercalated by atomic or oxide layers[12][13][14].

Superstripes conferences

Superstripes has given the name to a series of conferences dedicated on this subject that started in 2008, "Superstripes 2008". The second "Superstripes 2010" meeting will be held in Erice, Italy July 19–25 (2010)

References

  1. ^ a b Bianconi, A. On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites Solid State Communications 89, 933-936 (1994). Cite error: The named reference "Bianconi" was defined multiple times with different content (see the help page).
  2. ^ Perali, A. et al., The gap amplification at a shape resonance in a superlattice of quantum stripes: A mechanism for high Tc Solid State Communications 100, 181-186 (1996).
  3. ^ Bianconi, A., Valletta, A., Perali, A. & Saini, N. L. Superconductivity of a striped phase at the atomic limit Physica C: Superconductivity 296, 269-280 (1998).
  4. ^ Müller, K. A. From phase separation to stripes In Bianconi, A. & Saini, N. L. (eds.) Stripes and Related Phenomena, pages 1-8 (Kluwer Academic/Plenum Publishers, New York, 2002)..
  5. ^ Müller, K. A. Essential Heterogeneities in Hole-Doped Cuprate Superconductors, vol. 114/2005 of Structure & Bonding, 1-11 (Springer, Berlin / Heidelberg, 2005). URL http://dx.doi.org/10.1007/b101015
  6. ^ Raveau, B. The perovskite history: More than 60 years of research from the discovery of ferroelectricity to colossal magnetoresistance via high tc superconductivity. Progress in Solid State Chemistry 35, 171-173 (2007). URL http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001.
  7. ^ Bishop, A. R. High Tc oxides: a collusion of spin, charge and lattice. Journal of Physics: Conference Series 108, 012027+ (2008). doi:10.1088/1742-6596/108/1/012027
  8. ^ Di Castro, D., Colapietro, M. & Bianconi, G. Metallic stripes in oxygen doped La2CuO4.1 Int. J. Mod. Phys. 14, 3438-3443 (2000). doi:10.1142/S0217979200003927.
  9. ^ Saini, N. L. & Bianconi, A. Superstripes by anomalous x-ray diffraction and angle resolved photoemission in Bi2212. International Journal of Modern Physics B 14, 3649-3655 (2000). doi:10.1142/S0217979200004179.
  10. ^ Bianconi, A., Di Castro, D., Saini, N. L. & Bianconi, G. Superstripes (self organization of quantum wires in high tc superconductors). In Thorpe, M. F. & Phillips, J. C. (eds.) Phase Transitions and Self-Organization in Electronic and Molecular Networks, Fundamental Materials Research, chap. 24, 375-388 (Kluwer Academic Publishers, Boston, 2002). doi:10.1007/0-306-47113-2_24.
  11. ^ Poccia, N. & Fratini, M. The misfit strain critical point in the 3d phase diagrams of cuprates. Journal of Superconductivity and Novel Magnetism 22, 299-303 (2009). doi:10.1007/s10948-008-0435-8.
  12. ^ Stripes and related phenomena, edited by Antonio Bianconi and Naurang L. Saini Published in 2000, Kluwer Academic/Plenum Publishers (New York) ISBN 0-306-46419-5
  13. ^ [ISBN 9781402039881 Symmetry and Heterogeneity in High Temperature Superconductors (NATO Science Series II: Mathematics, Physics & Chemistry)] edited by Antonio Bianconi (Editor) Springer
  14. ^ Superconductivity in Complex Systems, edited by K. Alex Müller and Annette Bussmann-Holder, Book Series Structure & Bonding, Publisher Springer Berlin / Heidelberg ISBN 978-3-540-23124-0

External links

  • Superstripes 2008 [1]
  • Superstripes 2010 [2]
  • Superstripes web page [3]