Blue-footed booby: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 99.8.108.101 (talk) to last revision by ClueBot NG (HG)
m Added 17 dois to journal cites using AWB (10159)
Line 23: Line 23:
The natural breeding habitats of the Blue-footed Booby are the tropical and subtropical islands of the [[Pacific Ocean]]. It can be found from the [[Gulf of California]] down along the western coasts of Central and South America down to [[Peru]]. Approximately one half of all breeding pairs nest on the [[Galápagos Islands]].<ref name=natgeo>{{cite web|title=Blue-Footed Booby|url=http://animals.nationalgeographic.com/animals/birds/blue-footed-booby/|work=National Geographic|accessdate=26 November 2012}}</ref> Its diet mainly consists of fish, which it obtains by diving and sometimes swimming underwater in search of its prey. While it sometimes hunts alone, the Blue-footed Booby mainly hunts in groups.<ref name=":1" />
The natural breeding habitats of the Blue-footed Booby are the tropical and subtropical islands of the [[Pacific Ocean]]. It can be found from the [[Gulf of California]] down along the western coasts of Central and South America down to [[Peru]]. Approximately one half of all breeding pairs nest on the [[Galápagos Islands]].<ref name=natgeo>{{cite web|title=Blue-Footed Booby|url=http://animals.nationalgeographic.com/animals/birds/blue-footed-booby/|work=National Geographic|accessdate=26 November 2012}}</ref> Its diet mainly consists of fish, which it obtains by diving and sometimes swimming underwater in search of its prey. While it sometimes hunts alone, the Blue-footed Booby mainly hunts in groups.<ref name=":1" />


The Blue-footed Booby usually lays one to three eggs at a time. The species practices asynchronous hatching, which means that eggs that are laid first are hatched before the consequent eggs, resulting in a growth inequality and size disparity between siblings. This results in [[siblicide|facultative siblicide]] in times of food scarcity,<ref name=":2">{{cite journal|last=Drummond|first=Hugh|author2=Gonzalez, Edda |author3=Osorno, Jose Luis |title=Parent-Offspring Cooperation in the Blue-footed Booby (''Sula nebouxii''): Social Roles in Infanticidal Brood Reduction|journal=Behavioral Ecology and Sociobiology|year=1986|volume=19|issue=5|pages=365–372}}</ref> making the Blue-footed Booby an effective model for studying [[parent-offspring conflict]] and [[sibling rivalry]].
The Blue-footed Booby usually lays one to three eggs at a time. The species practices asynchronous hatching, which means that eggs that are laid first are hatched before the consequent eggs, resulting in a growth inequality and size disparity between siblings. This results in [[siblicide|facultative siblicide]] in times of food scarcity,<ref name=":2">{{cite journal|last=Drummond|first=Hugh|author2=Gonzalez, Edda |author3=Osorno, Jose Luis |title=Parent-Offspring Cooperation in the Blue-footed Booby (''Sula nebouxii''): Social Roles in Infanticidal Brood Reduction|journal=Behavioral Ecology and Sociobiology|year=1986|volume=19|issue=5|pages=365–372|doi=10.1007/bf00295710}}</ref> making the Blue-footed Booby an effective model for studying [[parent-offspring conflict]] and [[sibling rivalry]].


== Taxonomy ==
== Taxonomy ==
Line 38: Line 38:


== Distribution and habitat ==
== Distribution and habitat ==
The Blue-footed Booby is distributed among the continental coasts of the eastern [[Pacific Ocean]] from [[California]] to the [[Galápagos Islands]] down into Peru.<ref>{{cite journal|last=Zavalaga|first=Zavalaga|author2=Benvenuti, Silvano |author3=Dall'Antonia, Luigi |author4= Emslie, Steven D. |title=Diving Behavior of Blue-footed Boobies ''Sula nebouxii'' in Northern Peru in Relation to Sex, Body Size and Prey Type|journal=Mar Ecol Prog Ser|date=April 2007|volume=336|pages=291–303|url=http://www.int-res.com/articles/meps2007/336/m336p291.pdf}}</ref> It is strictly a marine bird. Its only need for land is to breed and rear young, which it does along the rocky coasts of the eastern Pacific.<ref>{{cite web|last=Díaz|first=Hernández|title=Blue-footed Booby (''Sula nebouxii'')|url=http://neotropical.birds.cornell.edu/portal/species/overview?p_p_spp=107356|publisher=Neotropical Birds Online|accessdate=9 December 2012|author2=José Alfredo|author3=Erika Nathalia Salazar Gómez}}</ref>
The Blue-footed Booby is distributed among the continental coasts of the eastern [[Pacific Ocean]] from [[California]] to the [[Galápagos Islands]] down into Peru.<ref>{{cite journal|last=Zavalaga|first=Zavalaga|author2=Benvenuti, Silvano |author3=Dall'Antonia, Luigi |author4= Emslie, Steven D. |title=Diving Behavior of Blue-footed Boobies ''Sula nebouxii'' in Northern Peru in Relation to Sex, Body Size and Prey Type|journal=Mar Ecol Prog Ser|date=April 2007|volume=336|pages=291–303|url=http://www.int-res.com/articles/meps2007/336/m336p291.pdf |doi=10.3354/meps336291}}</ref> It is strictly a marine bird. Its only need for land is to breed and rear young, which it does along the rocky coasts of the eastern Pacific.<ref>{{cite web|last=Díaz|first=Hernández|title=Blue-footed Booby (''Sula nebouxii'')|url=http://neotropical.birds.cornell.edu/portal/species/overview?p_p_spp=107356|publisher=Neotropical Birds Online|accessdate=9 December 2012|author2=José Alfredo|author3=Erika Nathalia Salazar Gómez}}</ref>


A Booby may use and defend two or three nesting sites, which consist of bare black lava in small divots in the ground, until they develop a preference for one a few weeks before the eggs are laid. These nests are created as parts of large colonies. While nesting, the female will turn to face the sun throughout the day, so the nest is surrounded by [[excretion]].
A Booby may use and defend two or three nesting sites, which consist of bare black lava in small divots in the ground, until they develop a preference for one a few weeks before the eggs are laid. These nests are created as parts of large colonies. While nesting, the female will turn to face the sun throughout the day, so the nest is surrounded by [[excretion]].


=== Natal dispersal ===
=== Natal dispersal ===
Females start breeding when they are 1 to 6 years old, while males start breeding when they are 2 to 6 years old. There is very limited [[Biological dispersal|natal dispersal]], meaning that young pairs do not move far from their original natal nests for their own first reproduction, leading to the congregation of hundreds of boobies in dense colonies. The benefit of limited dispersal is that by staying close to their parents' nesting sites, the boobies are more likely to have a high quality nest. Since their parents had successfully raised chicks to reproductive age, their nest site must have been effective, either by providing cover from [[predation]] and [[parasitism]], or by its suitability for taking off and landing.<ref>{{cite journal|last=Osorio-Beristain|first=Marcela|author2=Hugh Drummond|title=Natal Dispersal and Deferred Breeding in the Blue-Footed Booby|journal=The Auk|year=1993|volume=110|issue=2}}</ref> [[Bigamy]] has been observed in the species, and there are known cases where two females and one male all share a single nest.<ref>{{cite journal|last=Castillo-Guerrero|first=Jose Alfredo|author2=Eric Mellink|author3=Aaron Aguilar|title=Bigamy in the Blue-footed Booby and the Brown Booby?|journal=Waterbirds: The International Journal of Waterbird Biology|year=2005|volume = 28|issue = 3|pages = 399–401}}</ref>
Females start breeding when they are 1 to 6 years old, while males start breeding when they are 2 to 6 years old. There is very limited [[Biological dispersal|natal dispersal]], meaning that young pairs do not move far from their original natal nests for their own first reproduction, leading to the congregation of hundreds of boobies in dense colonies. The benefit of limited dispersal is that by staying close to their parents' nesting sites, the boobies are more likely to have a high quality nest. Since their parents had successfully raised chicks to reproductive age, their nest site must have been effective, either by providing cover from [[predation]] and [[parasitism]], or by its suitability for taking off and landing.<ref>{{cite journal|last=Osorio-Beristain|first=Marcela|author2=Hugh Drummond|title=Natal Dispersal and Deferred Breeding in the Blue-Footed Booby|journal=The Auk|year=1993|volume=110|issue=2}}</ref> [[Bigamy]] has been observed in the species, and there are known cases where two females and one male all share a single nest.<ref>{{cite journal|last=Castillo-Guerrero|first=Jose Alfredo|author2=Eric Mellink|author3=Aaron Aguilar|title=Bigamy in the Blue-footed Booby and the Brown Booby?|journal=Waterbirds: The International Journal of Waterbird Biology|year=2005|volume = 28|issue = 3|pages = 399–401|doi=10.1675/1524-4695(2005)028[0399:bitbba]2.0.co;2}}</ref>


== Foot pigmentation ==
== Foot pigmentation ==
The blue color of the Blue-footed Booby's webbed feet comes from [[carotenoid]] pigments obtained from its diet of fresh fish. Carotenoids act as [[antioxidants]] and stimulants for the Blue-footed Booby's immune function, suggesting that carotenoid-pigmentation is an indicator of an individual's immunological state<ref name="Velando 2006">{{cite journal|last=Velando|first=Alberto|coauthors=Rene Beamonte-Barrientos and Roxana Torres|title=Pigment-based Skin Colour in the Blue-footed Booby: an Honest Signal of Current Condition Used by Females to Adjust Reproductive Investment|journal=Oecologia|year=2006|volume=149|pages=535–542|issue = 3}}</ref> Blue feet also indicate the current health condition of a booby. Boobies who were experimentally food-deprived for forty-eight hours experienced a decrease in foot brightness due to a reduction in the amount of [[lipid]]s and [[lipoprotein]]s that are used to absorb and transport carotenoids. Thus, the feet are rapid and honest indicators of a booby's current level of nourishment.<ref name="Velando 2006" /> As blue feet are signals that reliably indicate the immunological and health condition of a booby, coloration is favored through [[sexual selection]].
The blue color of the Blue-footed Booby's webbed feet comes from [[carotenoid]] pigments obtained from its diet of fresh fish. Carotenoids act as [[antioxidants]] and stimulants for the Blue-footed Booby's immune function, suggesting that carotenoid-pigmentation is an indicator of an individual's immunological state<ref name="Velando 2006">{{cite journal|last=Velando|first=Alberto|coauthors=Rene Beamonte-Barrientos and Roxana Torres|title=Pigment-based Skin Colour in the Blue-footed Booby: an Honest Signal of Current Condition Used by Females to Adjust Reproductive Investment|journal=Oecologia|year=2006|volume=149|pages=535–542|issue = 3|doi=10.1007/s00442-006-0457-5}}</ref> Blue feet also indicate the current health condition of a booby. Boobies who were experimentally food-deprived for forty-eight hours experienced a decrease in foot brightness due to a reduction in the amount of [[lipid]]s and [[lipoprotein]]s that are used to absorb and transport carotenoids. Thus, the feet are rapid and honest indicators of a booby's current level of nourishment.<ref name="Velando 2006" /> As blue feet are signals that reliably indicate the immunological and health condition of a booby, coloration is favored through [[sexual selection]].


===Female selection===
===Female selection===
The brightness of the feet decreases with age, so females tend to mate with younger males with brighter feet, who have higher [[fertility]] and increased ability to provide paternal care than do older males. In a [[cross-fostering]] experiment, it was observed that foot color reflects paternal contribution to raising chicks; chicks raised by foster fathers with brighter feet grew faster than chicks raised by foster males with duller feet.<ref>{{cite journal|last=Torres|first=Roxana|author2=Velando, Alberto|title=Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby.|journal=Journal of Animal Ecology|year=2007|volume=76|issue = 6|pages = 1161–1168}}</ref> Females continuously evaluate their partners' condition based on foot color. In one experiment, males whose partners had laid a first egg in the nest had their feet dulled by make-up. The female partners laid smaller second eggs a few days later. As duller feet usually indicate a decrease in health and possibly genetic quality, it is adaptive for these females to decrease their investment in the second egg. The smaller second eggs contained less yolk concentration, which could influence embryo development, hatching success, and subsequent chick growth and survival. In addition, they contained less yolk [[androgens]].<ref>{{cite journal|last=Detressangle|first=Fabrice|author2=Lordes Boeck|author3=Roxana Torres|title=Maternal Investment in Eggs Is Affected by Male Feet Colour and Breeding Conditions in the Blue-Footed Booby, Sula nebouxii|journal=Behavioral Ecology and Sociobiology|year=2008|issue = 12|volume = 62|pages = 1899–1908}}</ref> As androgen plays an important role in chick survival, the experiment suggested female Blue-footed Boobies use the attractiveness and perceived genetic quality of their mates to determine how much resources they should allocate to their eggs.<ref name="Velando 2006"/> This supports the differential allocation theory, which predicts that parents invest more in the care of their offspring when paired with attractive mates.<ref name="Velando 2006"/>
The brightness of the feet decreases with age, so females tend to mate with younger males with brighter feet, who have higher [[fertility]] and increased ability to provide paternal care than do older males. In a [[cross-fostering]] experiment, it was observed that foot color reflects paternal contribution to raising chicks; chicks raised by foster fathers with brighter feet grew faster than chicks raised by foster males with duller feet.<ref>{{cite journal|last=Torres|first=Roxana|author2=Velando, Alberto|title=Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby.|journal=Journal of Animal Ecology|year=2007|volume=76|issue = 6|pages = 1161–1168|doi=10.1111/j.1365-2656.2007.01282.x}}</ref> Females continuously evaluate their partners' condition based on foot color. In one experiment, males whose partners had laid a first egg in the nest had their feet dulled by make-up. The female partners laid smaller second eggs a few days later. As duller feet usually indicate a decrease in health and possibly genetic quality, it is adaptive for these females to decrease their investment in the second egg. The smaller second eggs contained less yolk concentration, which could influence embryo development, hatching success, and subsequent chick growth and survival. In addition, they contained less yolk [[androgens]].<ref>{{cite journal|last=Detressangle|first=Fabrice|author2=Lordes Boeck|author3=Roxana Torres|title=Maternal Investment in Eggs Is Affected by Male Feet Colour and Breeding Conditions in the Blue-Footed Booby, Sula nebouxii|journal=Behavioral Ecology and Sociobiology|year=2008|issue = 12|volume = 62|pages = 1899–1908}}</ref> As androgen plays an important role in chick survival, the experiment suggested female Blue-footed Boobies use the attractiveness and perceived genetic quality of their mates to determine how much resources they should allocate to their eggs.<ref name="Velando 2006"/> This supports the differential allocation theory, which predicts that parents invest more in the care of their offspring when paired with attractive mates.<ref name="Velando 2006"/>


===Male selection===
===Male selection===
Males also assess their partner's reproductive value and adjust their own investment in the brood according to their partner's condition. Females that lay larger and brighter eggs are in better condition and have greater [[reproductive value (population genetics)|reproductive value]]. Therefore, males tend to display higher attentiveness and parental care to larger eggs, since those eggs were produced by a female with apparent good genetic quality. Smaller, duller eggs garnered less paternal care. Female foot color is also observed as an indication of perceived female condition. In one experiment, the color of eggs was muted by researchers, it was found that males were willing to exercise similar care for both large eggs and small eggs if his mate had brightly colored feet, whereas males paired with dull-footed females only incubated larger eggs. Interestingly, researchers also found that males did not increase their care when females exhibited both bright feet and high-quality offspring.<ref>{{cite journal|last=Morales|first=Judith|author2=Roxana Torres|author3=Alberto Velando|title=Safe Betting: Males Help Dull Females Only When They Raise High-quality Offspring|journal=Behavioral Ecology and Sociobiology|year=2012|volume=66|pages=135–143|issue = 1}}</ref>
Males also assess their partner's reproductive value and adjust their own investment in the brood according to their partner's condition. Females that lay larger and brighter eggs are in better condition and have greater [[reproductive value (population genetics)|reproductive value]]. Therefore, males tend to display higher attentiveness and parental care to larger eggs, since those eggs were produced by a female with apparent good genetic quality. Smaller, duller eggs garnered less paternal care. Female foot color is also observed as an indication of perceived female condition. In one experiment, the color of eggs was muted by researchers, it was found that males were willing to exercise similar care for both large eggs and small eggs if his mate had brightly colored feet, whereas males paired with dull-footed females only incubated larger eggs. Interestingly, researchers also found that males did not increase their care when females exhibited both bright feet and high-quality offspring.<ref>{{cite journal|last=Morales|first=Judith|author2=Roxana Torres|author3=Alberto Velando|title=Safe Betting: Males Help Dull Females Only When They Raise High-quality Offspring|journal=Behavioral Ecology and Sociobiology|year=2012|volume=66|pages=135–143|issue = 1|doi=10.1007/s00265-011-1261-8}}</ref>


==Behavior and ecology==
==Behavior and ecology==
Line 59: Line 59:
[[File:Blue-footed Booby (Sula nebouxii) -displaying.jpg|thumb|Displaying (Sky-pointing)]]
[[File:Blue-footed Booby (Sula nebouxii) -displaying.jpg|thumb|Displaying (Sky-pointing)]]
[[File:Blue-footed Booby (Sula nebouxii) -one leg raised.jpg|upright|Another way of displaying by raising a foot|thumb]]
[[File:Blue-footed Booby (Sula nebouxii) -one leg raised.jpg|upright|Another way of displaying by raising a foot|thumb]]
The Blue-footed Booby is [[monogamous]], although it has the potential to be [[bigamous]].<ref>{{cite journal |first1=José Alfredo |last1=Castillo-Guerrero |first2=Eric |last2=Mellink |first3=Aarón |last3=Aguilar |year=2005 |title=Bigamy in the Blue-Footed Booby and the Brown Booby? |journal=Waterbirds |volume=28 |issue=3 |pages=399–401 |jstor=4132556 |doi=10.1675/1524-4695(2005)028[0399:BITBBA]2.0.CO;2}}</ref> It is an [[opportunistic breeder]], with the breeding cycle occurring every 8 to 9 months.<ref>{{cite journal|last=Anderson|first=David J.|title=Differential responses of boobies and other seabirds in the Galapagos to the 1986–87 El Nino- Southern Oscillation event|journal=Mar. Ecol. Prog. Ser.|date=March 1989|volume=52|pages=209–216|url=http://www.int-res.com/articles/meps/52/m052p209.pdf}}</ref> The [[courtship]] of the Blue-footed Booby consists of the male flaunting his blue feet and [[mating dance|dancing]] to impress the female. The male begins by showing his feet, strutting in front of the female. Then, he presents nest materials and finishes the mating ritual with a final display of his feet.<ref>{{cite web|title=Blue-footed Booby, Sula nebouxii|url=http://marinebio.org/species.asp?id=527#.UNT1yG9fASY|work=MarineBio|accessdate=December 21, 2012}}</ref> The dance also includes "sky-pointing," which involves the male pointing his head and bill up to the sky while keeping the wings and tail raised.<ref>{{cite web |url=http://www.oiseaux-birds.com/card-blue-footed-booby.html |title=Blue-footed Booby |publisher=Oiseaux-birds |accessdate=21 December 2012}}</ref>
The Blue-footed Booby is [[monogamous]], although it has the potential to be [[bigamous]].<ref>{{cite journal |first1=José Alfredo |last1=Castillo-Guerrero |first2=Eric |last2=Mellink |first3=Aarón |last3=Aguilar |year=2005 |title=Bigamy in the Blue-Footed Booby and the Brown Booby? |journal=Waterbirds |volume=28 |issue=3 |pages=399–401 |jstor=4132556 |doi=10.1675/1524-4695(2005)028[0399:BITBBA]2.0.CO;2}}</ref> It is an [[opportunistic breeder]], with the breeding cycle occurring every 8 to 9 months.<ref>{{cite journal|last=Anderson|first=David J.|title=Differential responses of boobies and other seabirds in the Galapagos to the 1986–87 El Nino- Southern Oscillation event|journal=Mar. Ecol. Prog. Ser.|date=March 1989|volume=52|pages=209–216|url=http://www.int-res.com/articles/meps/52/m052p209.pdf|doi=10.3354/meps052209}}</ref> The [[courtship]] of the Blue-footed Booby consists of the male flaunting his blue feet and [[mating dance|dancing]] to impress the female. The male begins by showing his feet, strutting in front of the female. Then, he presents nest materials and finishes the mating ritual with a final display of his feet.<ref>{{cite web|title=Blue-footed Booby, Sula nebouxii|url=http://marinebio.org/species.asp?id=527#.UNT1yG9fASY|work=MarineBio|accessdate=December 21, 2012}}</ref> The dance also includes "sky-pointing," which involves the male pointing his head and bill up to the sky while keeping the wings and tail raised.<ref>{{cite web |url=http://www.oiseaux-birds.com/card-blue-footed-booby.html |title=Blue-footed Booby |publisher=Oiseaux-birds |accessdate=21 December 2012}}</ref>


=== Hunting and feeding ===
=== Hunting and feeding ===
Line 74: Line 74:


[[File:Sula nebouxii - 03.jpg|thumb|upright|''Sula nebouxii ''chick<!-- why does this image look unlike the rest and why is it solely described using its genus-species? -->]]
[[File:Sula nebouxii - 03.jpg|thumb|upright|''Sula nebouxii ''chick<!-- why does this image look unlike the rest and why is it solely described using its genus-species? -->]]
Like other [[Sexual dimorphism|sexually size-dimorphic]] birds, female Blue-footed Boobies usually favor the smaller sex during times of food scarcity. Booby chicks do not show clear differences in size based on sex, but females do grow faster than males, which means they require greater parental investment. Blue-footed Boobies display behavior that is described in the Flexible Investment Hypothesis, which states that a female will adjust the allocation of resources to maximize her lifetime reproductive success. This was shown in an experiment in which females had their flight feathers trimmed, so that they had to expend more energy during flights to obtain food for their broods. Female chicks of such mothers were more strongly affected than their brothers, in that they had lower masses and shorter wing lengths.<ref>{{cite journal|last=Velando|first=Alberto|title=Experimental Manipulation of Maternal Effort Produces Differential Effects in Sons and Daughters: Implications for Adaptive Sex Ratios in the Blue-footed Booby|journal=Behavioral Ecology|year=2002|volume=13|issue=4|pages = 443–449}}</ref>
Like other [[Sexual dimorphism|sexually size-dimorphic]] birds, female Blue-footed Boobies usually favor the smaller sex during times of food scarcity. Booby chicks do not show clear differences in size based on sex, but females do grow faster than males, which means they require greater parental investment. Blue-footed Boobies display behavior that is described in the Flexible Investment Hypothesis, which states that a female will adjust the allocation of resources to maximize her lifetime reproductive success. This was shown in an experiment in which females had their flight feathers trimmed, so that they had to expend more energy during flights to obtain food for their broods. Female chicks of such mothers were more strongly affected than their brothers, in that they had lower masses and shorter wing lengths.<ref>{{cite journal|last=Velando|first=Alberto|title=Experimental Manipulation of Maternal Effort Produces Differential Effects in Sons and Daughters: Implications for Adaptive Sex Ratios in the Blue-footed Booby|journal=Behavioral Ecology|year=2002|volume=13|issue=4|pages = 443–449|doi=10.1093/beheco/13.4.443}}</ref>


====Brood hierarchy due to asynchronous hatching====
====Brood hierarchy due to asynchronous hatching====
The Blue-footed Booby lays one to three eggs in one nest at a time, although 80% of nests only contain two eggs.<ref name="Velando 2003">{{cite journal|last=Velando|first=Alberto|author2=Carlos Alonso-Alvarez|title=Differential body condition regulation by males and females in response to experimental manipulations of brood size and parental effort in the blue-footed booby|journal=Journal of Animal Ecology|year=2003|volume=72|issue = 5|pages = 846–856}}</ref> Eggs are laid five days apart. After the first egg is laid, it is immediately incubated, which results in a difference in chick hatching times. The first chick hatches four days before the other, so it receives a four-day head start in growth compared to its younger sibling. This [[asynchronous]] hatching serves many purposes. First, it spaces out the difficult time period in [[Parenting|rearing]] during which newborn chicks are too feeble to accept [[regurgitation (digestion)|regurgitated]] food. In addition, it reduces the chance that parents will suffer total brood loss to predators such as the [[milk snake]].<ref name="Drummond 1986">{{cite journal|last=Drummond|first=Hugh|author2=Edda Gonzalez|author3=Jose Luis Osorno|title=Parent-Offspring Cooperation in the Blue-footed Booby (Sula nebouxii): Social Roles in Infanticidal Brood Reduction|journal=Behavioral Ecology and Sociobiology|year=1986|volume=19|issue=5|pages=365–372}}</ref>
The Blue-footed Booby lays one to three eggs in one nest at a time, although 80% of nests only contain two eggs.<ref name="Velando 2003">{{cite journal|last=Velando|first=Alberto|author2=Carlos Alonso-Alvarez|title=Differential body condition regulation by males and females in response to experimental manipulations of brood size and parental effort in the blue-footed booby|journal=Journal of Animal Ecology|year=2003|volume=72|issue = 5|pages = 846–856|doi=10.1046/j.1365-2656.2003.00756.x}}</ref> Eggs are laid five days apart. After the first egg is laid, it is immediately incubated, which results in a difference in chick hatching times. The first chick hatches four days before the other, so it receives a four-day head start in growth compared to its younger sibling. This [[asynchronous]] hatching serves many purposes. First, it spaces out the difficult time period in [[Parenting|rearing]] during which newborn chicks are too feeble to accept [[regurgitation (digestion)|regurgitated]] food. In addition, it reduces the chance that parents will suffer total brood loss to predators such as the [[milk snake]].<ref name="Drummond 1986">{{cite journal|last=Drummond|first=Hugh|author2=Edda Gonzalez|author3=Jose Luis Osorno|title=Parent-Offspring Cooperation in the Blue-footed Booby (Sula nebouxii): Social Roles in Infanticidal Brood Reduction|journal=Behavioral Ecology and Sociobiology|year=1986|volume=19|issue=5|pages=365–372|doi=10.1007/bf00295710}}</ref>


Experiments have shown that asynchronous hatching may also reduce [[sibling rivalry]]. Experimentally-manipulated synchronous broods produced more aggressive chicks; chicks in asynchronous broods were less violent. This pattern of behavior arguably occurs through a clearly established [[dominance hierarchy|brood hierarchy]] in asynchronously hatched siblings. Although asynchronous hatching is not vital for the formation of brood hierarchies (the experimentally synchronous broods established them as well), it does aid in efficient brood reduction when food levels are low. Subordinate chicks in asynchronous broods die more quickly, thus relieving the parents of the burden of feeding both offspring when resources are insufficient to properly do so.<ref>{{cite journal|last=Osorno|first=Jose Luis|author2=Hugh Drummond|title=The Function of Hatching Asynchrony in the Blue-footed Booby|journal=Behavioral Ecology and Sociobiology|year=1995|volume=37|issue=4|pages=265–273}}</ref>
Experiments have shown that asynchronous hatching may also reduce [[sibling rivalry]]. Experimentally-manipulated synchronous broods produced more aggressive chicks; chicks in asynchronous broods were less violent. This pattern of behavior arguably occurs through a clearly established [[dominance hierarchy|brood hierarchy]] in asynchronously hatched siblings. Although asynchronous hatching is not vital for the formation of brood hierarchies (the experimentally synchronous broods established them as well), it does aid in efficient brood reduction when food levels are low. Subordinate chicks in asynchronous broods die more quickly, thus relieving the parents of the burden of feeding both offspring when resources are insufficient to properly do so.<ref>{{cite journal|last=Osorno|first=Jose Luis|author2=Hugh Drummond|title=The Function of Hatching Asynchrony in the Blue-footed Booby|journal=Behavioral Ecology and Sociobiology|year=1995|volume=37|issue=4|pages=265–273|doi=10.1007/bf00177406}}</ref>


====Facultative siblicide====
====Facultative siblicide====
Blue-footed Booby chicks practice [[Siblicide|facultative siblicide]], opting to cause the death of a sibling based on environmental conditions. The A-chick, who hatches first, will kill the younger B-chick if there is a food shortage. The initial size disparity between the A-chick and B-chick is retained for at least the first two months of life.<ref name="Drummond 1986"/> During lean times, the A-chick may attack the B-chick by pecking vigorously, or it may simply drag its younger sibling by the neck and oust it from the nest. Experiments in which the necks of chicks were taped to inhibit food ingestion showed that sibling aggression increased sharply when the weight of the A-chicks dropped below 20-25% of their potential. There was a steep increase in pecking below that threshold, indicating that siblicide is, in part, triggered by the dominant chick's weight, and not simply by the size difference between the siblings. It was also discovered that younger broods (those less than six weeks old) had three times the rate of pecking than older broods. This is perhaps due to the relative inability of young B-chicks to defend themselves against an A-chick attack.<ref name="Drummond 1989">{{cite journal|last=Drummond|first=Hugh|author2=Cecilia Garcia Chavelas|title=Food Shortage Influences Sibling Aggression in the Blue-footed Booby|journal=Animal Behavior|year=1989|volume=37|pages=806–819}}</ref>
Blue-footed Booby chicks practice [[Siblicide|facultative siblicide]], opting to cause the death of a sibling based on environmental conditions. The A-chick, who hatches first, will kill the younger B-chick if there is a food shortage. The initial size disparity between the A-chick and B-chick is retained for at least the first two months of life.<ref name="Drummond 1986"/> During lean times, the A-chick may attack the B-chick by pecking vigorously, or it may simply drag its younger sibling by the neck and oust it from the nest. Experiments in which the necks of chicks were taped to inhibit food ingestion showed that sibling aggression increased sharply when the weight of the A-chicks dropped below 20-25% of their potential. There was a steep increase in pecking below that threshold, indicating that siblicide is, in part, triggered by the dominant chick's weight, and not simply by the size difference between the siblings. It was also discovered that younger broods (those less than six weeks old) had three times the rate of pecking than older broods. This is perhaps due to the relative inability of young B-chicks to defend themselves against an A-chick attack.<ref name="Drummond 1989">{{cite journal|last=Drummond|first=Hugh|author2=Cecilia Garcia Chavelas|title=Food Shortage Influences Sibling Aggression in the Blue-footed Booby|journal=Animal Behavior|year=1989|volume=37|pages=806–819|doi=10.1016/0003-3472(89)90065-1}}</ref>


The elder sibling also may harm the younger one by controlling access to the food delivered by the parents. A-chicks always receive food before B-chicks. Although subordinate chicks beg just as much as their dominant brothers, the older chicks are able to divert the parents' attention to themselves, as their large size and conspicuousness serve as more effective stimuli.<ref name="Drummond 1986"/>
The elder sibling also may harm the younger one by controlling access to the food delivered by the parents. A-chicks always receive food before B-chicks. Although subordinate chicks beg just as much as their dominant brothers, the older chicks are able to divert the parents' attention to themselves, as their large size and conspicuousness serve as more effective stimuli.<ref name="Drummond 1986"/>


However, another experiment showed that booby chicks do not operate exclusively by the ''Leftovers Hypothesis'', where younger chicks are fed only after the elder ones are completely satiated. Instead, researchers identified a certain degree of tolerance towards the younger sibling during short-term periods of food shortages. This ''Tolerance Hypothesis'' suggests that the elder chicks will reduce food intake moderately, just enough so that the younger sibling does not starve. Although this system works during short-term food shortages, it is unsustainable during prolonged periods of dearth. In this latter case, the elder sibling will usually become aggressive and siblicidal.<ref>{{cite journal|last=Anderson|first=David J.|author2=R. E. Ricklefs|title=Evidence of Kin-Selected Tolerance by Nestlings in a Siblicidal Bird|journal=Behavioral Ecology and Sociobiology|year=1995|volume=37|issue=3|pages=163–168}}</ref>
However, another experiment showed that booby chicks do not operate exclusively by the ''Leftovers Hypothesis'', where younger chicks are fed only after the elder ones are completely satiated. Instead, researchers identified a certain degree of tolerance towards the younger sibling during short-term periods of food shortages. This ''Tolerance Hypothesis'' suggests that the elder chicks will reduce food intake moderately, just enough so that the younger sibling does not starve. Although this system works during short-term food shortages, it is unsustainable during prolonged periods of dearth. In this latter case, the elder sibling will usually become aggressive and siblicidal.<ref>{{cite journal|last=Anderson|first=David J.|author2=R. E. Ricklefs|title=Evidence of Kin-Selected Tolerance by Nestlings in a Siblicidal Bird|journal=Behavioral Ecology and Sociobiology|year=1995|volume=37|issue=3|pages=163–168|doi=10.1007/bf00176713}}</ref>


====Parental role in siblicide====
====Parental role in siblicide====
Line 93: Line 93:
Blue-footed Booby parents are passive spectators of this intrabrood conflict. They do not intervene in their offspring's struggles, even at the point of siblicide. Booby parents even appear to facilitate the demise of the younger sibling by creating and maintaining the inequality between the two chicks. They reinforce the brood hierarchy by feeding the dominant chick more often than the subordinate one. Thus, they respond to the brood hierarchy and not to the level of [[Begging behavior in animals|begging]] when deciding which chick to feed, as both chicks beg in equal amounts. This level of passivity towards the very possible death of their younger offspring may be an indication that brood reduction is advantageous for the parents.<ref name="Drummond 1989"/> The ''Insurance Egg Hypothesis'' views the second egg and resulting chick as insurance for the parent in case the first egg does not hatch, or if food levels are higher than expected.<ref name="Velando 2003"/>
Blue-footed Booby parents are passive spectators of this intrabrood conflict. They do not intervene in their offspring's struggles, even at the point of siblicide. Booby parents even appear to facilitate the demise of the younger sibling by creating and maintaining the inequality between the two chicks. They reinforce the brood hierarchy by feeding the dominant chick more often than the subordinate one. Thus, they respond to the brood hierarchy and not to the level of [[Begging behavior in animals|begging]] when deciding which chick to feed, as both chicks beg in equal amounts. This level of passivity towards the very possible death of their younger offspring may be an indication that brood reduction is advantageous for the parents.<ref name="Drummond 1989"/> The ''Insurance Egg Hypothesis'' views the second egg and resulting chick as insurance for the parent in case the first egg does not hatch, or if food levels are higher than expected.<ref name="Velando 2003"/>


However, Booby parents may not be as indifferent as they seem. Experimental evidence suggests that the parental behavior described above may be masking [[parent-offspring conflict]]. It was discovered that Blue-footed Booby parents make steep-sided nests that serve to deter the early ejection of the younger chick by the older sibling. This is in direct contrast to the [[Masked Booby]], a species in which siblicide is obligate due to the ease in which older siblings can eject younger chicks from their flat nests. When Blue-footed Booby nests were experimentally flattened, parents restored them to their original steepness.<ref>{{cite journal|last=Anderson|first=David J.|title=The Role of Parents in Siblicidal Brood Reduction of Two Booby Species|journal=The Auk|year=1995|volume=112|issue=4|pages=860–869}}</ref> In another experiment, Blue-footed Booby chicks that were placed in Masked Booby nests were more likely to engage in siblicide, which reveals that parental care somehow affects the level of siblicide.<ref>{{cite journal|last=Loughweed|first=Lynn W.|title=Parent Blue-footed Boobies Suppress Siblicidal Behavior of Offspring|journal=Behavioral Ecology and Sociobiology|year=1999|volume=45|issue=1|pages=11–18}}</ref> Parents also appear to respond more frequently to chicks that are in poorer body conditions during periods of food deprivation.<ref>{{cite journal|last=Villasenor|first=Emma|author2=Hugh Drummond|title=Honest Begging in the Blue-footed Booby: Signaling Food Deprivation and Body Condition|journal=Behavioral Ecology and Sociobiology|year=2007|volume=61|issue=7}}</ref> Egg-mass analysis shows that in clutches produced at the beginning of the breeding season, the second egg in a nest were, on average, 1.5% heavier than the first. Since heavier eggs give rise to heavier chicks that have greater fitness, this evidence indicates that parents may try to rectify any disadvantages that accompany a late hatching date by investing more into the second egg.<ref>{{cite journal|last=D'Alba|first=Liliana|author2=Roxana Torres|author3=G.R. Bortolotti|title=Seasonal Egg-Mass Variation and Laying Sequence in a Bird with Facultative Brood Reductions|journal=The Auk|year=2007|volume=124|issue=2|pages=643–652}}</ref> Hormonal analysis of eggs also shows that there appears to be no parental favoritism in regards to [[androgen]] allocation. It is important to note, however, that this may simply be that the species has evolved simpler ways to manipulate asymmetries and maximize parental reproductive output.<ref>{{cite journal|last=Drummond|first=Hugh|author2=Cristina Rodriguez|author3=Hubert Schwabl|title=Do Mothers Regulate Facultative and Obligate Siblicide by Differentially Provisioning Eggs with Hormones?|journal=J. Avian Biology|year=2008|volume=39|issue = 2|pages = 139–143}}</ref> Experiments show that what may at first appear to be parental cooperation with the elder chick may in fact mask a genetic parent-offspring conflict.<ref name=":31" />
However, Booby parents may not be as indifferent as they seem. Experimental evidence suggests that the parental behavior described above may be masking [[parent-offspring conflict]]. It was discovered that Blue-footed Booby parents make steep-sided nests that serve to deter the early ejection of the younger chick by the older sibling. This is in direct contrast to the [[Masked Booby]], a species in which siblicide is obligate due to the ease in which older siblings can eject younger chicks from their flat nests. When Blue-footed Booby nests were experimentally flattened, parents restored them to their original steepness.<ref>{{cite journal|last=Anderson|first=David J.|title=The Role of Parents in Siblicidal Brood Reduction of Two Booby Species|journal=The Auk|year=1995|volume=112|issue=4|pages=860–869|doi=10.2307/4089018}}</ref> In another experiment, Blue-footed Booby chicks that were placed in Masked Booby nests were more likely to engage in siblicide, which reveals that parental care somehow affects the level of siblicide.<ref>{{cite journal|last=Loughweed|first=Lynn W.|title=Parent Blue-footed Boobies Suppress Siblicidal Behavior of Offspring|journal=Behavioral Ecology and Sociobiology|year=1999|volume=45|issue=1|pages=11–18}}</ref> Parents also appear to respond more frequently to chicks that are in poorer body conditions during periods of food deprivation.<ref>{{cite journal|last=Villasenor|first=Emma|author2=Hugh Drummond|title=Honest Begging in the Blue-footed Booby: Signaling Food Deprivation and Body Condition|journal=Behavioral Ecology and Sociobiology|year=2007|volume=61|issue=7}}</ref> Egg-mass analysis shows that in clutches produced at the beginning of the breeding season, the second egg in a nest were, on average, 1.5% heavier than the first. Since heavier eggs give rise to heavier chicks that have greater fitness, this evidence indicates that parents may try to rectify any disadvantages that accompany a late hatching date by investing more into the second egg.<ref>{{cite journal|last=D'Alba|first=Liliana|author2=Roxana Torres|author3=G.R. Bortolotti|title=Seasonal Egg-Mass Variation and Laying Sequence in a Bird with Facultative Brood Reductions|journal=The Auk|year=2007|volume=124|issue=2|pages=643–652|doi=10.1642/0004-8038(2007)124[643:sevals]2.0.co;2}}</ref> Hormonal analysis of eggs also shows that there appears to be no parental favoritism in regards to [[androgen]] allocation. It is important to note, however, that this may simply be that the species has evolved simpler ways to manipulate asymmetries and maximize parental reproductive output.<ref>{{cite journal|last=Drummond|first=Hugh|author2=Cristina Rodriguez|author3=Hubert Schwabl|title=Do Mothers Regulate Facultative and Obligate Siblicide by Differentially Provisioning Eggs with Hormones?|journal=J. Avian Biology|year=2008|volume=39|issue = 2|pages = 139–143|doi=10.1111/j.0908-8857.2008.04365.x}}</ref> Experiments show that what may at first appear to be parental cooperation with the elder chick may in fact mask a genetic parent-offspring conflict.<ref name=":31" />


====Long-term effects of hierarchies====
====Long-term effects of hierarchies====
There is always a dominant-subordinate relationship between chicks in a brood. Although dominant A-chicks grow faster and survives past infancy more often than the subordinate B-chick, there is actually no difference in reproductive success between the two types of siblings during adulthood. In one longitudinal study, there appears to be no long-term effects of dominance hierarchies; in fact, subordinate chicks were often observed producing nests of their own before their dominant siblings.<ref name=":31">{{cite journal|last=Drummond|first=Hugh|author2=Roxana Torres|author3=V.V. Krishnana|title=Buffered Development: Resilience after Aggressive Subordination in Infancy|journal=The American Naturalist|year=2003|volume=161|issue=5|pages=794–807}}</ref>
There is always a dominant-subordinate relationship between chicks in a brood. Although dominant A-chicks grow faster and survives past infancy more often than the subordinate B-chick, there is actually no difference in reproductive success between the two types of siblings during adulthood. In one longitudinal study, there appears to be no long-term effects of dominance hierarchies; in fact, subordinate chicks were often observed producing nests of their own before their dominant siblings.<ref name=":31">{{cite journal|last=Drummond|first=Hugh|author2=Roxana Torres|author3=V.V. Krishnana|title=Buffered Development: Resilience after Aggressive Subordination in Infancy|journal=The American Naturalist|year=2003|volume=161|issue=5|pages=794–807|doi=10.1086/375170}}</ref>


=== Communication ===
=== Communication ===

Revision as of 06:30, 16 May 2014

Blue-footed Booby
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
Sula nebouxii
Binomial name
Sula nebouxii
Range shown by red area

The Blue-footed Booby (Sula nebouxii) is a marine bird in the family Sulidae, which includes ten species of long-winged seabirds. Blue-footed boobies belong to the genus Sula, which comprises six species of boobies. It is easily recognizable by its distinctive bright blue feet, which is a sexually selected trait. Males display their feet in an elaborate mating ritual by lifting their feet up and down while strutting before the female. The female is slightly larger than the male and can measure up to 90 cm (36 in) long with a wingspan of up to 1.5 m (4.9 ft).[2]

The natural breeding habitats of the Blue-footed Booby are the tropical and subtropical islands of the Pacific Ocean. It can be found from the Gulf of California down along the western coasts of Central and South America down to Peru. Approximately one half of all breeding pairs nest on the Galápagos Islands.[3] Its diet mainly consists of fish, which it obtains by diving and sometimes swimming underwater in search of its prey. While it sometimes hunts alone, the Blue-footed Booby mainly hunts in groups.[4]

The Blue-footed Booby usually lays one to three eggs at a time. The species practices asynchronous hatching, which means that eggs that are laid first are hatched before the consequent eggs, resulting in a growth inequality and size disparity between siblings. This results in facultative siblicide in times of food scarcity,[5] making the Blue-footed Booby an effective model for studying parent-offspring conflict and sibling rivalry.

Taxonomy

This species was formally named taxonomically in the year Charles Darwin died, 1882, from specimens collected in the Galapagos Islands. There are two recognized subspecies: Sula nebouxii excisa Todd, 1948 and Sula nebouxii nebouxii Milne-Edwards, 1882.[6] Its closest relative is the Peruvian Booby. It is likely that the two species split from each other recently due to their shared ecological and biological characteristics.[7]

The name booby comes from the Spanish word bobo ('stupid', 'fool', or 'clown') because the Blue-footed Booby is, like other seabirds, clumsy on land.[3] They are also regarded as foolish for their apparent fearlessness of humans.[2]

Description

The male (left) has a smaller pupil, slightly lighter feet, and is smaller in size than the female.

The Blue-footed Booby is on average 81 cm (32 in) long and weighs 1.5 kg (3.3 lbs), with the female being slightly larger than the male. Its wings are long and pointed, and are brown in color. The neck and head of the Blue-footed Booby are light brown with white streaks while the belly and underside exhibit pure white plumage.[8] Its eyes are placed on either side of its bill and oriented towards the front, enabling excellent binocular vision. Its eyes are a distinctive yellow, with the male having more yellow in its irises than the female. Blue-footed Booby chicks have black beaks and feet and are clad in a layer of soft white down.

Since the Blue-footed Booby frequently obtains fish by diving headlong into the water, it has permanently closed nostrils for this purpose, necessitating breathing through the corners of its mouth. Its most notable characteristic are its blue-colored feet, which can range in color from a pale turquoise to a deep aquamarine. Males and younger birds have lighter feet while females have darker feet.[2] Its blue feet play a key role in courtship rituals and breeding, with the male visually displaying its feet to attract mates during the breeding season.

Distribution and habitat

The Blue-footed Booby is distributed among the continental coasts of the eastern Pacific Ocean from California to the Galápagos Islands down into Peru.[9] It is strictly a marine bird. Its only need for land is to breed and rear young, which it does along the rocky coasts of the eastern Pacific.[10]

A Booby may use and defend two or three nesting sites, which consist of bare black lava in small divots in the ground, until they develop a preference for one a few weeks before the eggs are laid. These nests are created as parts of large colonies. While nesting, the female will turn to face the sun throughout the day, so the nest is surrounded by excretion.

Natal dispersal

Females start breeding when they are 1 to 6 years old, while males start breeding when they are 2 to 6 years old. There is very limited natal dispersal, meaning that young pairs do not move far from their original natal nests for their own first reproduction, leading to the congregation of hundreds of boobies in dense colonies. The benefit of limited dispersal is that by staying close to their parents' nesting sites, the boobies are more likely to have a high quality nest. Since their parents had successfully raised chicks to reproductive age, their nest site must have been effective, either by providing cover from predation and parasitism, or by its suitability for taking off and landing.[11] Bigamy has been observed in the species, and there are known cases where two females and one male all share a single nest.[12]

Foot pigmentation

The blue color of the Blue-footed Booby's webbed feet comes from carotenoid pigments obtained from its diet of fresh fish. Carotenoids act as antioxidants and stimulants for the Blue-footed Booby's immune function, suggesting that carotenoid-pigmentation is an indicator of an individual's immunological state[13] Blue feet also indicate the current health condition of a booby. Boobies who were experimentally food-deprived for forty-eight hours experienced a decrease in foot brightness due to a reduction in the amount of lipids and lipoproteins that are used to absorb and transport carotenoids. Thus, the feet are rapid and honest indicators of a booby's current level of nourishment.[13] As blue feet are signals that reliably indicate the immunological and health condition of a booby, coloration is favored through sexual selection.

Female selection

The brightness of the feet decreases with age, so females tend to mate with younger males with brighter feet, who have higher fertility and increased ability to provide paternal care than do older males. In a cross-fostering experiment, it was observed that foot color reflects paternal contribution to raising chicks; chicks raised by foster fathers with brighter feet grew faster than chicks raised by foster males with duller feet.[14] Females continuously evaluate their partners' condition based on foot color. In one experiment, males whose partners had laid a first egg in the nest had their feet dulled by make-up. The female partners laid smaller second eggs a few days later. As duller feet usually indicate a decrease in health and possibly genetic quality, it is adaptive for these females to decrease their investment in the second egg. The smaller second eggs contained less yolk concentration, which could influence embryo development, hatching success, and subsequent chick growth and survival. In addition, they contained less yolk androgens.[15] As androgen plays an important role in chick survival, the experiment suggested female Blue-footed Boobies use the attractiveness and perceived genetic quality of their mates to determine how much resources they should allocate to their eggs.[13] This supports the differential allocation theory, which predicts that parents invest more in the care of their offspring when paired with attractive mates.[13]

Male selection

Males also assess their partner's reproductive value and adjust their own investment in the brood according to their partner's condition. Females that lay larger and brighter eggs are in better condition and have greater reproductive value. Therefore, males tend to display higher attentiveness and parental care to larger eggs, since those eggs were produced by a female with apparent good genetic quality. Smaller, duller eggs garnered less paternal care. Female foot color is also observed as an indication of perceived female condition. In one experiment, the color of eggs was muted by researchers, it was found that males were willing to exercise similar care for both large eggs and small eggs if his mate had brightly colored feet, whereas males paired with dull-footed females only incubated larger eggs. Interestingly, researchers also found that males did not increase their care when females exhibited both bright feet and high-quality offspring.[16]

Behavior and ecology

Breeding

Displaying (Sky-pointing)
Another way of displaying by raising a foot

The Blue-footed Booby is monogamous, although it has the potential to be bigamous.[17] It is an opportunistic breeder, with the breeding cycle occurring every 8 to 9 months.[18] The courtship of the Blue-footed Booby consists of the male flaunting his blue feet and dancing to impress the female. The male begins by showing his feet, strutting in front of the female. Then, he presents nest materials and finishes the mating ritual with a final display of his feet.[19] The dance also includes "sky-pointing," which involves the male pointing his head and bill up to the sky while keeping the wings and tail raised.[20]

Hunting and feeding

Sequence showing plunge-diving from beginning to end

The Blue-footed Booby's diet consists mainly of fish. It is a specialized fish eater, feeding on small school fish such as sardines, anchovies, mackerel, and flying fish. It also feeds on squid and offal. The Blue-footed Booby dives into the ocean, sometimes from a great height, and can swim underwater in pursuit of its prey. It hunts singly, in pairs, or in larger flocks. Boobies travel in parties of about 12 to areas of water with large schools of small fish. When the lead bird sees a fish shoal in the water, it will signal to the rest of the group and they will all dive in unison, pointing their bodies down like arrows.[4]

Plunge diving can be done from heights of 10–30.5 m (33–100 ft) and even up to 100 m (330 ft). These birds hit the water around 97 km/h (60 mph) and can go to depths of 25 m (82 ft) below the water surface. Its skulls contain special air sacs that protect the brain from enormous pressure.[2] Prey are usually eaten while the birds are still underwater. Surprisingly, individuals prefer to eat on their own instead of with their hunting group, usually in the early morning or late afternoon.[21] Males and females fish differently, which may contribute to why Blue-foots, unlike other boobies, raise more than one young. The male is smaller and has a proportionally larger tail, which enables the male to fish in shallow areas as well as deep waters. The female is larger and can carry more food. Both the male and female feed the chicks through regurgitation.[21]

Rearing young

With egg and new young

The Blue-footed Booby is one of only two species of Booby that raises more than one chick in a breeding cycle.

The female Blue-footed Booby lays two or three eggs. Eggs are laid about four to five days apart. Both male and female take turns incubating the eggs, while the non-sitting bird keeps watch. Since the Blue-footed Booby does not have a brooding patch, it uses its feet to keep the eggs warm.[6] The incubation period is 41–45 days. Usually, one to two chicks are hatched from the two to three eggs originally laid. The male and female share parental responsibilities. The male will provide food for the young in the first part of their life because of his specialized diving. The female will take over when the demand is higher.[7] Chicks feed off the regurgitated fish in the adult's mouth. If the parent Blue-footed Booby does not have enough food for all of the chicks, it will only feed the biggest chick, ensuring that at least one will survive.[5]

Sula nebouxii chick

Like other sexually size-dimorphic birds, female Blue-footed Boobies usually favor the smaller sex during times of food scarcity. Booby chicks do not show clear differences in size based on sex, but females do grow faster than males, which means they require greater parental investment. Blue-footed Boobies display behavior that is described in the Flexible Investment Hypothesis, which states that a female will adjust the allocation of resources to maximize her lifetime reproductive success. This was shown in an experiment in which females had their flight feathers trimmed, so that they had to expend more energy during flights to obtain food for their broods. Female chicks of such mothers were more strongly affected than their brothers, in that they had lower masses and shorter wing lengths.[22]

Brood hierarchy due to asynchronous hatching

The Blue-footed Booby lays one to three eggs in one nest at a time, although 80% of nests only contain two eggs.[23] Eggs are laid five days apart. After the first egg is laid, it is immediately incubated, which results in a difference in chick hatching times. The first chick hatches four days before the other, so it receives a four-day head start in growth compared to its younger sibling. This asynchronous hatching serves many purposes. First, it spaces out the difficult time period in rearing during which newborn chicks are too feeble to accept regurgitated food. In addition, it reduces the chance that parents will suffer total brood loss to predators such as the milk snake.[24]

Experiments have shown that asynchronous hatching may also reduce sibling rivalry. Experimentally-manipulated synchronous broods produced more aggressive chicks; chicks in asynchronous broods were less violent. This pattern of behavior arguably occurs through a clearly established brood hierarchy in asynchronously hatched siblings. Although asynchronous hatching is not vital for the formation of brood hierarchies (the experimentally synchronous broods established them as well), it does aid in efficient brood reduction when food levels are low. Subordinate chicks in asynchronous broods die more quickly, thus relieving the parents of the burden of feeding both offspring when resources are insufficient to properly do so.[25]

Facultative siblicide

Blue-footed Booby chicks practice facultative siblicide, opting to cause the death of a sibling based on environmental conditions. The A-chick, who hatches first, will kill the younger B-chick if there is a food shortage. The initial size disparity between the A-chick and B-chick is retained for at least the first two months of life.[24] During lean times, the A-chick may attack the B-chick by pecking vigorously, or it may simply drag its younger sibling by the neck and oust it from the nest. Experiments in which the necks of chicks were taped to inhibit food ingestion showed that sibling aggression increased sharply when the weight of the A-chicks dropped below 20-25% of their potential. There was a steep increase in pecking below that threshold, indicating that siblicide is, in part, triggered by the dominant chick's weight, and not simply by the size difference between the siblings. It was also discovered that younger broods (those less than six weeks old) had three times the rate of pecking than older broods. This is perhaps due to the relative inability of young B-chicks to defend themselves against an A-chick attack.[26]

The elder sibling also may harm the younger one by controlling access to the food delivered by the parents. A-chicks always receive food before B-chicks. Although subordinate chicks beg just as much as their dominant brothers, the older chicks are able to divert the parents' attention to themselves, as their large size and conspicuousness serve as more effective stimuli.[24]

However, another experiment showed that booby chicks do not operate exclusively by the Leftovers Hypothesis, where younger chicks are fed only after the elder ones are completely satiated. Instead, researchers identified a certain degree of tolerance towards the younger sibling during short-term periods of food shortages. This Tolerance Hypothesis suggests that the elder chicks will reduce food intake moderately, just enough so that the younger sibling does not starve. Although this system works during short-term food shortages, it is unsustainable during prolonged periods of dearth. In this latter case, the elder sibling will usually become aggressive and siblicidal.[27]

Parental role in siblicide

In flight

Blue-footed Booby parents are passive spectators of this intrabrood conflict. They do not intervene in their offspring's struggles, even at the point of siblicide. Booby parents even appear to facilitate the demise of the younger sibling by creating and maintaining the inequality between the two chicks. They reinforce the brood hierarchy by feeding the dominant chick more often than the subordinate one. Thus, they respond to the brood hierarchy and not to the level of begging when deciding which chick to feed, as both chicks beg in equal amounts. This level of passivity towards the very possible death of their younger offspring may be an indication that brood reduction is advantageous for the parents.[26] The Insurance Egg Hypothesis views the second egg and resulting chick as insurance for the parent in case the first egg does not hatch, or if food levels are higher than expected.[23]

However, Booby parents may not be as indifferent as they seem. Experimental evidence suggests that the parental behavior described above may be masking parent-offspring conflict. It was discovered that Blue-footed Booby parents make steep-sided nests that serve to deter the early ejection of the younger chick by the older sibling. This is in direct contrast to the Masked Booby, a species in which siblicide is obligate due to the ease in which older siblings can eject younger chicks from their flat nests. When Blue-footed Booby nests were experimentally flattened, parents restored them to their original steepness.[28] In another experiment, Blue-footed Booby chicks that were placed in Masked Booby nests were more likely to engage in siblicide, which reveals that parental care somehow affects the level of siblicide.[29] Parents also appear to respond more frequently to chicks that are in poorer body conditions during periods of food deprivation.[30] Egg-mass analysis shows that in clutches produced at the beginning of the breeding season, the second egg in a nest were, on average, 1.5% heavier than the first. Since heavier eggs give rise to heavier chicks that have greater fitness, this evidence indicates that parents may try to rectify any disadvantages that accompany a late hatching date by investing more into the second egg.[31] Hormonal analysis of eggs also shows that there appears to be no parental favoritism in regards to androgen allocation. It is important to note, however, that this may simply be that the species has evolved simpler ways to manipulate asymmetries and maximize parental reproductive output.[32] Experiments show that what may at first appear to be parental cooperation with the elder chick may in fact mask a genetic parent-offspring conflict.[33]

Long-term effects of hierarchies

There is always a dominant-subordinate relationship between chicks in a brood. Although dominant A-chicks grow faster and survives past infancy more often than the subordinate B-chick, there is actually no difference in reproductive success between the two types of siblings during adulthood. In one longitudinal study, there appears to be no long-term effects of dominance hierarchies; in fact, subordinate chicks were often observed producing nests of their own before their dominant siblings.[33]

Communication

Blue-footed Boobies make raucous or polysyllabic grunts or shouts and thin whistling noises. The males of the species have been known to throw up their head and whistle at a passing, flying female. Their ritual displays are also a form of communication.

Mates can recognize each other by their calls. Researchers have analysed calls of Blue-footed Boobies and conducted playback experiments. Although calls differed between sexes, unique individual signatures were present. It was found that both males and females can discriminate the calls of their mates from others.[34]

References

  1. ^ Template:IUCN
  2. ^ a b c d "Blue-footed Booby Day". Galapagos Conservation Trust. 2010. Retrieved 26 November 2012.
  3. ^ a b "Blue-Footed Booby". National Geographic. Retrieved 26 November 2012.
  4. ^ a b Handbook of the Birds of the World Vol 1. Lynx Edicions. 1992.
  5. ^ a b Drummond, Hugh; Gonzalez, Edda; Osorno, Jose Luis (1986). "Parent-Offspring Cooperation in the Blue-footed Booby (Sula nebouxii): Social Roles in Infanticidal Brood Reduction". Behavioral Ecology and Sociobiology. 19 (5): 365–372. doi:10.1007/bf00295710.
  6. ^ a b "Sula nebouxii Milne-Edwards, 1882". ITIS Report.
  7. ^ a b Handbook of the Birds of the World Vol. 1. Lynx Edicions. 1992. p. 312.
  8. ^ "Blue-footed Booby - Sula nebouxii". NatureWorks. Retrieved November 26, 2012.
  9. ^ Zavalaga, Zavalaga; Benvenuti, Silvano; Dall'Antonia, Luigi; Emslie, Steven D. (April 2007). "Diving Behavior of Blue-footed Boobies Sula nebouxii in Northern Peru in Relation to Sex, Body Size and Prey Type" (PDF). Mar Ecol Prog Ser. 336: 291–303. doi:10.3354/meps336291.
  10. ^ Díaz, Hernández; José Alfredo; Erika Nathalia Salazar Gómez. "Blue-footed Booby (Sula nebouxii)". Neotropical Birds Online. Retrieved 9 December 2012.
  11. ^ Osorio-Beristain, Marcela; Hugh Drummond (1993). "Natal Dispersal and Deferred Breeding in the Blue-Footed Booby". The Auk. 110 (2).
  12. ^ Castillo-Guerrero, Jose Alfredo; Eric Mellink; Aaron Aguilar (2005). "Bigamy in the Blue-footed Booby and the Brown Booby?". Waterbirds: The International Journal of Waterbird Biology. 28 (3): 399–401. doi:10.1675/1524-4695(2005)028[0399:bitbba]2.0.co;2.
  13. ^ a b c d Velando, Alberto (2006). "Pigment-based Skin Colour in the Blue-footed Booby: an Honest Signal of Current Condition Used by Females to Adjust Reproductive Investment". Oecologia. 149 (3): 535–542. doi:10.1007/s00442-006-0457-5. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Torres, Roxana; Velando, Alberto (2007). "Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby". Journal of Animal Ecology. 76 (6): 1161–1168. doi:10.1111/j.1365-2656.2007.01282.x.
  15. ^ Detressangle, Fabrice; Lordes Boeck; Roxana Torres (2008). "Maternal Investment in Eggs Is Affected by Male Feet Colour and Breeding Conditions in the Blue-Footed Booby, Sula nebouxii". Behavioral Ecology and Sociobiology. 62 (12): 1899–1908.
  16. ^ Morales, Judith; Roxana Torres; Alberto Velando (2012). "Safe Betting: Males Help Dull Females Only When They Raise High-quality Offspring". Behavioral Ecology and Sociobiology. 66 (1): 135–143. doi:10.1007/s00265-011-1261-8.
  17. ^ Castillo-Guerrero, José Alfredo; Mellink, Eric; Aguilar, Aarón (2005). "Bigamy in the Blue-Footed Booby and the Brown Booby?". Waterbirds. 28 (3): 399–401. doi:10.1675/1524-4695(2005)028[0399:BITBBA]2.0.CO;2. JSTOR 4132556.
  18. ^ Anderson, David J. (March 1989). "Differential responses of boobies and other seabirds in the Galapagos to the 1986–87 El Nino- Southern Oscillation event" (PDF). Mar. Ecol. Prog. Ser. 52: 209–216. doi:10.3354/meps052209.
  19. ^ "Blue-footed Booby, Sula nebouxii". MarineBio. Retrieved December 21, 2012.
  20. ^ "Blue-footed Booby". Oiseaux-birds. Retrieved 21 December 2012.
  21. ^ a b Harris, M. 2001. "Sula nebouxii" (On-line), Animal Diversity Web. Accessed September 22, 2013 at http://animaldiversity.ummz.umich.edu/accounts/Sula_nebouxii/
  22. ^ Velando, Alberto (2002). "Experimental Manipulation of Maternal Effort Produces Differential Effects in Sons and Daughters: Implications for Adaptive Sex Ratios in the Blue-footed Booby". Behavioral Ecology. 13 (4): 443–449. doi:10.1093/beheco/13.4.443.
  23. ^ a b Velando, Alberto; Carlos Alonso-Alvarez (2003). "Differential body condition regulation by males and females in response to experimental manipulations of brood size and parental effort in the blue-footed booby". Journal of Animal Ecology. 72 (5): 846–856. doi:10.1046/j.1365-2656.2003.00756.x.
  24. ^ a b c Drummond, Hugh; Edda Gonzalez; Jose Luis Osorno (1986). "Parent-Offspring Cooperation in the Blue-footed Booby (Sula nebouxii): Social Roles in Infanticidal Brood Reduction". Behavioral Ecology and Sociobiology. 19 (5): 365–372. doi:10.1007/bf00295710.
  25. ^ Osorno, Jose Luis; Hugh Drummond (1995). "The Function of Hatching Asynchrony in the Blue-footed Booby". Behavioral Ecology and Sociobiology. 37 (4): 265–273. doi:10.1007/bf00177406.
  26. ^ a b Drummond, Hugh; Cecilia Garcia Chavelas (1989). "Food Shortage Influences Sibling Aggression in the Blue-footed Booby". Animal Behavior. 37: 806–819. doi:10.1016/0003-3472(89)90065-1.
  27. ^ Anderson, David J.; R. E. Ricklefs (1995). "Evidence of Kin-Selected Tolerance by Nestlings in a Siblicidal Bird". Behavioral Ecology and Sociobiology. 37 (3): 163–168. doi:10.1007/bf00176713.
  28. ^ Anderson, David J. (1995). "The Role of Parents in Siblicidal Brood Reduction of Two Booby Species". The Auk. 112 (4): 860–869. doi:10.2307/4089018.
  29. ^ Loughweed, Lynn W. (1999). "Parent Blue-footed Boobies Suppress Siblicidal Behavior of Offspring". Behavioral Ecology and Sociobiology. 45 (1): 11–18.
  30. ^ Villasenor, Emma; Hugh Drummond (2007). "Honest Begging in the Blue-footed Booby: Signaling Food Deprivation and Body Condition". Behavioral Ecology and Sociobiology. 61 (7).
  31. ^ D'Alba, Liliana; Roxana Torres; G.R. Bortolotti (2007). "Seasonal Egg-Mass Variation and Laying Sequence in a Bird with Facultative Brood Reductions". The Auk. 124 (2): 643–652. doi:10.1642/0004-8038(2007)124[643:sevals]2.0.co;2.
  32. ^ Drummond, Hugh; Cristina Rodriguez; Hubert Schwabl (2008). "Do Mothers Regulate Facultative and Obligate Siblicide by Differentially Provisioning Eggs with Hormones?". J. Avian Biology. 39 (2): 139–143. doi:10.1111/j.0908-8857.2008.04365.x.
  33. ^ a b Drummond, Hugh; Roxana Torres; V.V. Krishnana (2003). "Buffered Development: Resilience after Aggressive Subordination in Infancy". The American Naturalist. 161 (5): 794–807. doi:10.1086/375170.
  34. ^ Dentressangle, Fabrice, Thierry Aubin, and Nicolas Mathevon (2012). "Males Use Time Whereas Females Prefer Harmony: Individual Call Recognition in the Dimorphic Blue-footed Booby." Animal Behaviour 84 (2): 413-20. Print.

Further reading

  • Nelson, Bryan. (1968) Galapagos Island of Birds. New York: William Morrow & Company.
  • Perrins, Dr. Christopher M. and Dr. Alex L.A. Middleton. (1985) The Encyclopedia of Birds. New York: Facts of File Publications. ISBN 0-8160-1150-8
  • Hutchins, Michael, Jerome A. Jackson, Walter J. Bock, and Donna Olendorf, eds. (2002) Grzimek's Animal Life Encyclopedia, Edition 2 - Volume 08 - Birds I, Farmington Hill, Michigan: Gale Group. ISBN 0-7876-5784-0

Template:Link FA