Jump to content

En (Lie algebra): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m rvv
References: templates
Line 16: Line 16:


==References==
==References==
*{{cite arXiv|author=R.W. Gebert, H. Nicolai|title=E<sub>10</sub> for beginners|year=1994|version=|eprint=hep-th/9411188}} Guersey Memorial Conference Proceedings '94
*[http://arxiv.org/abs/hep-th/9411188 E<sub>10</sub> for beginners] R.W. Gebert, H. Nicolai
*[http://arxiv.org/abs/hep-th/0104081 E<sub>11</sub> and M Theory] P.C. West
*{{cite arXiv|author=P.C. West|title=E<sub>11</sub> and M Theory|year=2001|version=|eprint=hep-th/0104081}} Class.Quant.Grav. 18 (2001) 4443-4460
[[Category: Lie groups]]
[[Category: Lie groups]]

Revision as of 23:11, 19 September 2006

In mathematics, En is the Kac–Moody algebra whose Dynkin diagram is a line of n-1 points with an extra point attached to the third point from the end.

E is a name for a certain Lie algebra of dimension 190.

Examples

  • E3 is another name for the Lie algebra A1A2 of dimension 11.
  • E4 is another name for the Lie algebra A4 of dimension 24.
  • E5 is another name for the Lie algebra D5 of dimension 45.
  • E6 is the exceptional Lie algebra of dimension 78.
  • E7 is the exceptional Lie algebra of dimension 133.
  • E8 is the exceptional Lie algebra of dimension 248.
  • E9 is another name for the infinite dimensional affine Lie algebra E8(1) corresponding to the Lie algebra of type E8
  • E10 is an infinite dimensional Kac–Moody algebra whose root lattice is the even Lorentzian unimodular lattice II9,1 of dimension 10. Some of its root multiplicities have been calculated; for small roots the multiplicities seem to be well behaved, but for larger roots the observed patterns break down.
  • E11 is an infinite dimensional Kac–Moody algebra that has been conjectured to generate the symmetry "group" of M-theory.
  • En for n≥12 is an infinite dimensional Kac–Moody algebra that has not been studied much.

References

  • R.W. Gebert, H. Nicolai (1994). "E10 for beginners". arXiv:hep-th/9411188. {{cite arXiv}}: Cite has empty unknown parameter: |version= (help) Guersey Memorial Conference Proceedings '94
  • P.C. West (2001). "E11 and M Theory". arXiv:hep-th/0104081. {{cite arXiv}}: Cite has empty unknown parameter: |version= (help) Class.Quant.Grav. 18 (2001) 4443-4460