S-Nitrosylation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 2: Line 2:
S-Nitrosylation, also termed as S-nitrosation, the covalent attachment of NO to a cysteine residue to form an [[S-Nitrosothiol|''S''-nitrosothiol]] (SNO), is a [[Posttranslational modification|post-translational protein modification]] of broad purview across phylogeny and cell types.<ref>Anand P, Stamler JS. J. Mol. Med. (Berl). 90(3): 233-244 (2012)</ref>. It operates as a fundamental mechanism for cellular signaling and accounts for the large part of NO bioactivity. S-nitrosylation is precisely targeted,<ref>Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Proc. Natl. Acad. Sci. U S A 98:11158-11162 (2003)</ref> reversible,<ref>Padgett CM, Whorton AR. Am. J. Physiol. 269:739-749 (1995)</ref> spatiotemporally restricted<ref>Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Neuron 28:183-193 (2000)</ref><ref>Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Proc. Natl. Acad. Sci. U S A 103:19777-19782 (2006)</ref> and necessary for a wide range of cellular responses,<ref>Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Nat. Rev. Mol. Cell. Biol. 6:150-166 (2005)</ref> including the prototypic example of red blood cell mediated autoregulation of blood flow that is essential for vertebrate life<ref>Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, Reynolds JR, Stamler JS. Proc. Natl. Acad. Sci. U S A 112:6425-6430 (2015)</ref>. Although originally thought to involve multiple chemical routes in vivo, accumulating evidence suggests that S-nitrosylation depends on enzymatic activity, entailing three classes of enzymes (S-nitrosylases) that operate in concert to conjugate NO to proteins, drawing analogy to ubiquitinylation. <ref>Seth D, Hess DT, Hausladen A, Wagn L, Wang Y, Stamler JS. Mol Cell; 69: 451-464 (2018)</ref> ''S''-Nitrosylation was first described by Stamler et al. and proposed as a general mechanism for control of protein function, including examples of both active and allosteric regulation of proteins by endogenous and exogenous sources of NO<ref>Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. Proc Natl Acad Sci USA; 89: 444-448 (1992)</ref><ref>Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)</ref><ref>Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel D, Loscalzo J. Proc Natl Acad Sci USA; 89: 8087-8091 (1992)</ref><ref>Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki O, Michel T, Singel D, Loscalzo J. In: Moncada S, Marletta MA, Hibbs JB ed. Biology of Nitric Oxide. I Portland Press Proceed, pp 20-23 (1992)</ref>. The redox-based chemical mechanisms for S-nitrosylation in biological systems were also described concomitantly<ref>Stamler JS, Singel DJ, Loscalzo J. Science 258: 1898-1902 (1992)</ref>. Important examples of proteins whose activities were subsequently shown to be regulated by ''S''-nitrosylation include the NMDA-type glutamate receptor in the brain <ref>Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)</ref><ref>Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS. Nature 364(6438):626-632 (1993)</ref>. Aberrant S-nitrosylation following stimulation of the NMDA receptor would come to serve as a prototypic example of the involvement of S-nitrosylation in disease<ref>Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA.Neurobiol Dis ;84:99-108 (2015)</ref>. S-nitrosylation also contributes to functions and dysfunctions of cardiac myocytes <ref>{{cite journal |last1=Beuve |first1=A |last2=Wu |first2=C |last3=Cui |first3=C |last4=Liu |first4=T |last5=Jain |first5=MR |last6=Huang |first6=C |last7=Yan |first7=L |last8=Kholodovych |first8=V |last9=Li |first9=H |title=Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. |journal=Journal of proteomics |date=14 April 2016 |volume=138 |pages=40-7 |doi=10.1016/j.jprot.2016.02.009 |pmid=26917471}}</ref>. ''S''-Nitrosylation is now established as ubiquitous in biology, having been demonstrated to occur in all [[Kingdom (biology)|phylogenetic kingdoms]]<ref>Seth D, Hausladen A, Wang YJ, Stamler JS. Science 336(6080):470-473 (2012)</ref><ref>Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. Plant Sci. 181(5):540-544 (2011)</ref> and has been described as the prototypic redox-based signalling mechanism,<ref>Stamler JS, Lamas S, Fang FC. Cell 106(6):675-683 (2001)</ref> hypothesized to have evolved on primordial Earth.<ref>Derakhshan B, Hao G, Gross SS. Cardiovasc. Res. 75(2):210-219 (2007)</ref>'''''''''
S-Nitrosylation, also termed as S-nitrosation, the covalent attachment of NO to a cysteine residue to form an [[S-Nitrosothiol|''S''-nitrosothiol]] (SNO), is a [[Posttranslational modification|post-translational protein modification]] of broad purview across phylogeny and cell types.<ref>Anand P, Stamler JS. J. Mol. Med. (Berl). 90(3): 233-244 (2012)</ref>. It operates as a fundamental mechanism for cellular signaling and accounts for the large part of NO bioactivity. S-nitrosylation is precisely targeted,<ref>Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Proc. Natl. Acad. Sci. U S A 98:11158-11162 (2003)</ref> reversible,<ref>Padgett CM, Whorton AR. Am. J. Physiol. 269:739-749 (1995)</ref> spatiotemporally restricted<ref>Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Neuron 28:183-193 (2000)</ref><ref>Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Proc. Natl. Acad. Sci. U S A 103:19777-19782 (2006)</ref> and necessary for a wide range of cellular responses,<ref>Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Nat. Rev. Mol. Cell. Biol. 6:150-166 (2005)</ref> including the prototypic example of red blood cell mediated autoregulation of blood flow that is essential for vertebrate life<ref>Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, Reynolds JR, Stamler JS. Proc. Natl. Acad. Sci. U S A 112:6425-6430 (2015)</ref>. Although originally thought to involve multiple chemical routes in vivo, accumulating evidence suggests that S-nitrosylation depends on enzymatic activity, entailing three classes of enzymes (S-nitrosylases) that operate in concert to conjugate NO to proteins, drawing analogy to ubiquitinylation. <ref>Seth D, Hess DT, Hausladen A, Wagn L, Wang Y, Stamler JS. Mol Cell; 69: 451-464 (2018)</ref> ''S''-Nitrosylation was first described by Stamler et al. and proposed as a general mechanism for control of protein function, including examples of both active and allosteric regulation of proteins by endogenous and exogenous sources of NO<ref>Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. Proc Natl Acad Sci USA; 89: 444-448 (1992)</ref><ref>Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)</ref><ref>Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel D, Loscalzo J. Proc Natl Acad Sci USA; 89: 8087-8091 (1992)</ref><ref>Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki O, Michel T, Singel D, Loscalzo J. In: Moncada S, Marletta MA, Hibbs JB ed. Biology of Nitric Oxide. I Portland Press Proceed, pp 20-23 (1992)</ref>. The redox-based chemical mechanisms for S-nitrosylation in biological systems were also described concomitantly<ref>Stamler JS, Singel DJ, Loscalzo J. Science 258: 1898-1902 (1992)</ref>. Important examples of proteins whose activities were subsequently shown to be regulated by ''S''-nitrosylation include the NMDA-type glutamate receptor in the brain <ref>Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)</ref><ref>Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS. Nature 364(6438):626-632 (1993)</ref>. Aberrant S-nitrosylation following stimulation of the NMDA receptor would come to serve as a prototypic example of the involvement of S-nitrosylation in disease<ref>Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA.Neurobiol Dis ;84:99-108 (2015)</ref>. S-nitrosylation also contributes to functions and dysfunctions of cardiac myocytes <ref>{{cite journal |last1=Beuve |first1=A |last2=Wu |first2=C |last3=Cui |first3=C |last4=Liu |first4=T |last5=Jain |first5=MR |last6=Huang |first6=C |last7=Yan |first7=L |last8=Kholodovych |first8=V |last9=Li |first9=H |title=Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. |journal=Journal of proteomics |date=14 April 2016 |volume=138 |pages=40-7 |doi=10.1016/j.jprot.2016.02.009 |pmid=26917471}}</ref>. ''S''-Nitrosylation is now established as ubiquitous in biology, having been demonstrated to occur in all [[Kingdom (biology)|phylogenetic kingdoms]]<ref>Seth D, Hausladen A, Wang YJ, Stamler JS. Science 336(6080):470-473 (2012)</ref><ref>Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. Plant Sci. 181(5):540-544 (2011)</ref> and has been described as the prototypic redox-based signalling mechanism,<ref>Stamler JS, Lamas S, Fang FC. Cell 106(6):675-683 (2001)</ref> hypothesized to have evolved on primordial Earth.<ref>Derakhshan B, Hao G, Gross SS. Cardiovasc. Res. 75(2):210-219 (2007)</ref>'''''''''


The reverse of ''S''-nitrosylation is denitrosylation, principally an enzymically controlled process. Multiple enzymes have been described to date, which fall into two main classes mediating denitrosylation of protein and low molecular weight SNOs, respectively. ''S''-Nitrosoglutathione reductase (GSNOR) is exemplary of the low molecular weight class; it accelerates the decomposition of ''S''-nitrosoglutathione (GSNO) and SNO-proteins in equilibrium with GSNO. The enzyme is highly conserved from bacteria to humans.<ref>Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. Nature 410(6827):490-4 (2001)</ref>. Thioredoxin (Trx)-related proteins, including Trx1 and 2 in mammals, catalyze the direct denitrosylation of ''S''-nitrosoproteins<ref>Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE. J. Am. Chem. Soc. 127:15815-23 (2005)</ref><ref>Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Biochemistry. 46:8472-83 (2007)</ref><ref>Benhar M, Forrester MT, Hess DT, Stamler JS. Science 320:1050-4 (2008)</ref>. Aberrant ''S''-nitrosylation (and denitrosylation) has been implicated in multiple diseases including heart disease, cancer and asthma <ref>Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Curr. Mol. Med. 12(1):50-67 (2012)</ref> <ref> Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA. Mol Cancer Res.Sep;10(9):1203-15.(2012)</ref><ref>230. Foster MW, Hess DT, Stamler JS Trends Molec Med; 15: 391-404 (2009)</ref> as well as neurological disorders, including stroke <ref>Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. Science 297(5584):1186-90 (2002)</ref>, chronic degenerative diseases (e.g., Parkinson's and Alzheimer's disease) <ref>Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U S A 101(29):10810-4 (2004)</ref><ref>Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Masliah E, Nomura Y, Lipton SA. Nature 2441(7092):513-7 (2006)</ref><ref>Benhar M, Forrester MT, Stamler JS. ACS Chem. Biol. 1(6):355-8 (2006)</ref><ref>Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. Science 324(5923):102-5 (2009)</ref> and Amyotrophic Lateral Sclerosis (ALS).<ref>Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB. Proc. Natl. Acad. Sci. U S A 103(7):2404-9 (2006)</ref>
The reverse of ''S''-nitrosylation is denitrosylation, principally an enzymically controlled process. Multiple enzymes have been described to date, which fall into two main classes mediating denitrosylation of protein and low molecular weight SNOs, respectively. ''S''-Nitrosoglutathione reductase (GSNOR) is exemplary of the low molecular weight class; it accelerates the decomposition of ''S''-nitrosoglutathione (GSNO) and SNO-proteins in equilibrium with GSNO. The enzyme is highly conserved from bacteria to humans.<ref>Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. Nature 410(6827):490-4 (2001)</ref>. Thioredoxin (Trx)-related proteins, including Trx1 and 2 in mammals, catalyze the transnitrosylation<ref>{{cite book |last1=Wu |first1=Changgong |last2=Liu |first2=Tong |last3=Wang |first3=Yan |last4=Yan |first4=Lin |last5=Cui |first5=Chuanlong |last6=Beuve |first6=Annie |last7=Li |first7=Hong |title=Methods in Molecular Biology |date=2018 |publisher=Springer New York |isbn=9781493976942 |pages=253–266 |url=https://link.springer.com/protocol/10.1007/978-1-4939-7695-9_20 |language=en |chapter=Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets}}</ref> and direct denitrosylation of ''S''-nitrosoproteins<ref>Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE. J. Am. Chem. Soc. 127:15815-23 (2005)</ref><ref>Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Biochemistry. 46:8472-83 (2007)</ref><ref>Benhar M, Forrester MT, Hess DT, Stamler JS. Science 320:1050-4 (2008)</ref>. Aberrant ''S''-nitrosylation (and denitrosylation) has been implicated in multiple diseases including heart disease<ref>{{cite journal |last1=Beuve |first1=A |last2=Wu |first2=C |last3=Cui |first3=C |last4=Liu |first4=T |last5=Jain |first5=MR |last6=Huang |first6=C |last7=Yan |first7=L |last8=Kholodovych |first8=V |last9=Li |first9=H |title=Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. |journal=Journal of proteomics |date=14 April 2016 |volume=138 |pages=40-7 |doi=10.1016/j.jprot.2016.02.009 |pmid=26917471}}</ref>, cancer and asthma <ref>Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Curr. Mol. Med. 12(1):50-67 (2012)</ref> <ref> Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA. Mol Cancer Res.Sep;10(9):1203-15.(2012)</ref><ref>230. Foster MW, Hess DT, Stamler JS Trends Molec Med; 15: 391-404 (2009)</ref> as well as neurological disorders, including stroke <ref>Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. Science 297(5584):1186-90 (2002)</ref>, chronic degenerative diseases (e.g., Parkinson's and Alzheimer's disease) <ref>Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U S A 101(29):10810-4 (2004)</ref><ref>Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Masliah E, Nomura Y, Lipton SA. Nature 2441(7092):513-7 (2006)</ref><ref>Benhar M, Forrester MT, Stamler JS. ACS Chem. Biol. 1(6):355-8 (2006)</ref><ref>Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. Science 324(5923):102-5 (2009)</ref> and Amyotrophic Lateral Sclerosis (ALS).<ref>Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB. Proc. Natl. Acad. Sci. U S A 103(7):2404-9 (2006)</ref>


== References ==
== References ==

Revision as of 19:47, 17 August 2018

S-Nitrosylation, also termed as S-nitrosation, the covalent attachment of NO to a cysteine residue to form an S-nitrosothiol (SNO), is a post-translational protein modification of broad purview across phylogeny and cell types.[1]. It operates as a fundamental mechanism for cellular signaling and accounts for the large part of NO bioactivity. S-nitrosylation is precisely targeted,[2] reversible,[3] spatiotemporally restricted[4][5] and necessary for a wide range of cellular responses,[6] including the prototypic example of red blood cell mediated autoregulation of blood flow that is essential for vertebrate life[7]. Although originally thought to involve multiple chemical routes in vivo, accumulating evidence suggests that S-nitrosylation depends on enzymatic activity, entailing three classes of enzymes (S-nitrosylases) that operate in concert to conjugate NO to proteins, drawing analogy to ubiquitinylation. [8] S-Nitrosylation was first described by Stamler et al. and proposed as a general mechanism for control of protein function, including examples of both active and allosteric regulation of proteins by endogenous and exogenous sources of NO[9][10][11][12]. The redox-based chemical mechanisms for S-nitrosylation in biological systems were also described concomitantly[13]. Important examples of proteins whose activities were subsequently shown to be regulated by S-nitrosylation include the NMDA-type glutamate receptor in the brain [14][15]. Aberrant S-nitrosylation following stimulation of the NMDA receptor would come to serve as a prototypic example of the involvement of S-nitrosylation in disease[16]. S-nitrosylation also contributes to functions and dysfunctions of cardiac myocytes [17]. S-Nitrosylation is now established as ubiquitous in biology, having been demonstrated to occur in all phylogenetic kingdoms[18][19] and has been described as the prototypic redox-based signalling mechanism,[20] hypothesized to have evolved on primordial Earth.[21]''''

The reverse of S-nitrosylation is denitrosylation, principally an enzymically controlled process. Multiple enzymes have been described to date, which fall into two main classes mediating denitrosylation of protein and low molecular weight SNOs, respectively. S-Nitrosoglutathione reductase (GSNOR) is exemplary of the low molecular weight class; it accelerates the decomposition of S-nitrosoglutathione (GSNO) and SNO-proteins in equilibrium with GSNO. The enzyme is highly conserved from bacteria to humans.[22]. Thioredoxin (Trx)-related proteins, including Trx1 and 2 in mammals, catalyze the transnitrosylation[23] and direct denitrosylation of S-nitrosoproteins[24][25][26]. Aberrant S-nitrosylation (and denitrosylation) has been implicated in multiple diseases including heart disease[27], cancer and asthma [28] [29][30] as well as neurological disorders, including stroke [31], chronic degenerative diseases (e.g., Parkinson's and Alzheimer's disease) [32][33][34][35] and Amyotrophic Lateral Sclerosis (ALS).[36]

References

  1. ^ Anand P, Stamler JS. J. Mol. Med. (Berl). 90(3): 233-244 (2012)
  2. ^ Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Proc. Natl. Acad. Sci. U S A 98:11158-11162 (2003)
  3. ^ Padgett CM, Whorton AR. Am. J. Physiol. 269:739-749 (1995)
  4. ^ Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Neuron 28:183-193 (2000)
  5. ^ Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Proc. Natl. Acad. Sci. U S A 103:19777-19782 (2006)
  6. ^ Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Nat. Rev. Mol. Cell. Biol. 6:150-166 (2005)
  7. ^ Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, Reynolds JR, Stamler JS. Proc. Natl. Acad. Sci. U S A 112:6425-6430 (2015)
  8. ^ Seth D, Hess DT, Hausladen A, Wagn L, Wang Y, Stamler JS. Mol Cell; 69: 451-464 (2018)
  9. ^ Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. Proc Natl Acad Sci USA; 89: 444-448 (1992)
  10. ^ Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)
  11. ^ Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel D, Loscalzo J. Proc Natl Acad Sci USA; 89: 8087-8091 (1992)
  12. ^ Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki O, Michel T, Singel D, Loscalzo J. In: Moncada S, Marletta MA, Hibbs JB ed. Biology of Nitric Oxide. I Portland Press Proceed, pp 20-23 (1992)
  13. ^ Stamler JS, Singel DJ, Loscalzo J. Science 258: 1898-1902 (1992)
  14. ^ Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)
  15. ^ Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS. Nature 364(6438):626-632 (1993)
  16. ^ Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA.Neurobiol Dis ;84:99-108 (2015)
  17. ^ Beuve, A; Wu, C; Cui, C; Liu, T; Jain, MR; Huang, C; Yan, L; Kholodovych, V; Li, H (14 April 2016). "Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor". Journal of proteomics. 138: 40–7. doi:10.1016/j.jprot.2016.02.009. PMID 26917471.
  18. ^ Seth D, Hausladen A, Wang YJ, Stamler JS. Science 336(6080):470-473 (2012)
  19. ^ Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. Plant Sci. 181(5):540-544 (2011)
  20. ^ Stamler JS, Lamas S, Fang FC. Cell 106(6):675-683 (2001)
  21. ^ Derakhshan B, Hao G, Gross SS. Cardiovasc. Res. 75(2):210-219 (2007)
  22. ^ Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. Nature 410(6827):490-4 (2001)
  23. ^ Wu, Changgong; Liu, Tong; Wang, Yan; Yan, Lin; Cui, Chuanlong; Beuve, Annie; Li, Hong (2018). "Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets". Methods in Molecular Biology. Springer New York. pp. 253–266. ISBN 9781493976942.
  24. ^ Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE. J. Am. Chem. Soc. 127:15815-23 (2005)
  25. ^ Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Biochemistry. 46:8472-83 (2007)
  26. ^ Benhar M, Forrester MT, Hess DT, Stamler JS. Science 320:1050-4 (2008)
  27. ^ Beuve, A; Wu, C; Cui, C; Liu, T; Jain, MR; Huang, C; Yan, L; Kholodovych, V; Li, H (14 April 2016). "Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor". Journal of proteomics. 138: 40–7. doi:10.1016/j.jprot.2016.02.009. PMID 26917471.
  28. ^ Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Curr. Mol. Med. 12(1):50-67 (2012)
  29. ^ Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA. Mol Cancer Res.Sep;10(9):1203-15.(2012)
  30. ^ 230. Foster MW, Hess DT, Stamler JS Trends Molec Med; 15: 391-404 (2009)
  31. ^ Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. Science 297(5584):1186-90 (2002)
  32. ^ Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U S A 101(29):10810-4 (2004)
  33. ^ Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Masliah E, Nomura Y, Lipton SA. Nature 2441(7092):513-7 (2006)
  34. ^ Benhar M, Forrester MT, Stamler JS. ACS Chem. Biol. 1(6):355-8 (2006)
  35. ^ Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. Science 324(5923):102-5 (2009)
  36. ^ Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB. Proc. Natl. Acad. Sci. U S A 103(7):2404-9 (2006)