Quasi-crystals (supramolecular): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎top: task, replaced: Photochemistry & Photobiology → Photochemistry and Photobiology
Citation bot (talk | contribs)
m Alter: title. Add: pmid, issue, hdl, chapter, doi. Removed accessdate with no specified URL. Removed parameters. | You can use this bot yourself. Report bugs here. | User-activated.
Line 4: Line 4:
'''Quasi-crystals''' are [[Supramolecular chemistry|supramolecular aggregates]] exhibiting both [[crystalline]] (solid) properties as well as amorphous, [[Liquid crystal|liquid-like]] properties.
'''Quasi-crystals''' are [[Supramolecular chemistry|supramolecular aggregates]] exhibiting both [[crystalline]] (solid) properties as well as amorphous, [[Liquid crystal|liquid-like]] properties.
[[Self-organization#Self-organization in chemistry|Self-organized]] structures termed "quasi-crystals" were originally described in 1978 by the Israeli scientist [[Valeri A. Krongauz]] of the [[Weizmann Institute of Science]], in the ''[[Nature (journal)|Nature]]'' paper, ''Quasi-crystals from irradiated photochromic dyes in an applied electric field''. ''<ref name=Nature>{{cite journal|last= V. A. Krongauz|first=|author2=E. S. Goldburt |title=Quasi-crystals from irradiated photochromic dyes in an applied electric field,|journal=Nature|date=5 January 1978|volume=271|issue=5640|pages=43–45|doi=10.1038/271040b0|url=http://www.nature.com/nature/journal/v271/n5640/abs/271043a0.html|accessdate=24 April 2014|bibcode = 1978Natur.271...40V }}</ref>
[[Self-organization#Self-organization in chemistry|Self-organized]] structures termed "quasi-crystals" were originally described in 1978 by the Israeli scientist [[Valeri A. Krongauz]] of the [[Weizmann Institute of Science]], in the ''[[Nature (journal)|Nature]]'' paper, ''Quasi-crystals from irradiated photochromic dyes in an applied electric field''. ''<ref name=Nature>{{cite journal|last= V. A. Krongauz|author2=E. S. Goldburt |title=Quasi-crystals from irradiated photochromic dyes in an applied electric field|journal=Nature|date=5 January 1978|volume=271|issue=5640|pages=43–45|doi=10.1038/271040b0|url=http://www.nature.com/nature/journal/v271/n5640/abs/271043a0.html|accessdate=24 April 2014|bibcode = 1978Natur.271...40V }}</ref>


[[File:Formation of merocyanine dipoles upon irradiation.jpg|thumb|Scheme 1. Formation of merocyanine dipoles upon irradiation]]
[[File:Formation of merocyanine dipoles upon irradiation.jpg|thumb|Scheme 1. Formation of merocyanine dipoles upon irradiation]]


In his 1978 paper Krongauz coined the term “Quasi-Crystals” for the new self-organized colloidal particles . The Quasi-crystals are supramolecular aggregates manifesting both crystalline properties e.g. [[Bragg scattering]], as well as amorphous, liquid-like properties i.e. drop-like shapes, fluidity, extensibility and elasticity in electric field. The supramolecular Quasi-crystals are produced in photochemical reaction by exposing solutions of photochromic [[spiropyran]] molecules to UV radiation. The ultraviolet light induces the conversion of the spiropyrans to [[merocyanine]] molecules that manifest [[electric dipole moment]]s. (see Scheme 1). The quasi-crystals have external shape of submicron globules and their internal structure consists of crystals enveloped by an [[Amorphous solid|amorphous matter]](see Fig. 1). The crystals are formed by [[self-assembled]] stacks of the merocyanine molecular dipoles aligning themselves in a parallel manner, while amorphous envelopes consist of the same merocyanine dipoles aligned in an anti-parallel manner (Fig.1, Scheme2).<ref name="b">{{cite journal|last=V. A. Krongauz|first=|author2=S. N. Fishman |author3=E. S. Goldburt |title=Quasi-crystals. Growth from photochromic spiropyrans on irradiation in a constant electric field|journal=J. Phys. Chem.|date=1978|volume=82|issue=23|pages=2469–2474|doi=10.1021/j100512a004|url=http://pubs.acs.org/doi/abs/10.1021/j100512a004?prevSearch=krongauz%252C%2B1978&searchHistoryKey=|accessdate=24 April 2014}}</ref><ref name="Ref 3">{{cite journal|last=V. A. Krongauz|title=Quasi-Crystals|journal=Israel Journal of Chemistry|date=1979|volume=18|issue=3–4 |pages=304–311|doi=10.1002/ijch.197900047|url=http://onlinelibrary.wiley.com/doi/10.1002/ijch.197900047/abstract|accessdate=25 April 2014}}</ref><ref name="Ref 4">{{cite book|last=V. A. Krongauz|first=|title=Electro-Optics and Dielectrics of Macromolecules and Colloids|date=1979|publisher=Springer US|location=U.S.A|isbn=978-1-4684-3497-2|pages=329–336|url=https://rd.springer.com/chapter/10.1007%2F978-1-4684-3497-2_35#|authorlink=Quasi-Crystals Produced by Colloidal Photochromic Dyes in an Applied Electric Field|editor=B. R. Jennings|accessdate=25 April 2014}}</ref> In an applied electrostatic field, quasi-crystals form macroscopic threads that show linear optical [[dichroism]].<ref name="Nature" /><ref name="Ref 5">{{cite journal|last=V.A. Krongauz|author2=A.A. Parshutkin |title=The effect of the electric field on photochromism of spiropyrans. The dipole crystallization of a dye along the lines of force|journal= Photochemistry and Photobiology|date=May 1972|volume=15|issue=5|pages=503–507|doi=10.1111/j.1751-1097.1972.tb06261.x|url=http://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1972.tb06261.x/abstract|accessdate=25 April 2014}}</ref>
In his 1978 paper Krongauz coined the term “Quasi-Crystals” for the new self-organized colloidal particles . The Quasi-crystals are supramolecular aggregates manifesting both crystalline properties e.g. [[Bragg scattering]], as well as amorphous, liquid-like properties i.e. drop-like shapes, fluidity, extensibility and elasticity in electric field. The supramolecular Quasi-crystals are produced in photochemical reaction by exposing solutions of photochromic [[spiropyran]] molecules to UV radiation. The ultraviolet light induces the conversion of the spiropyrans to [[merocyanine]] molecules that manifest [[electric dipole moment]]s. (see Scheme 1). The quasi-crystals have external shape of submicron globules and their internal structure consists of crystals enveloped by an [[Amorphous solid|amorphous matter]](see Fig. 1). The crystals are formed by [[self-assembled]] stacks of the merocyanine molecular dipoles aligning themselves in a parallel manner, while amorphous envelopes consist of the same merocyanine dipoles aligned in an anti-parallel manner (Fig.1, Scheme2).<ref name="b">{{cite journal|last=V. A. Krongauz|author2=S. N. Fishman |author3=E. S. Goldburt |title=Quasi-crystals. Growth from photochromic spiropyrans on irradiation in a constant electric field|journal=J. Phys. Chem.|date=1978|volume=82|issue=23|pages=2469–2474|doi=10.1021/j100512a004}}</ref><ref name="Ref 3">{{cite journal|last=V. A. Krongauz|title=Quasi-Crystals|journal=Israel Journal of Chemistry|date=1979|volume=18|issue=3–4 |pages=304–311|doi=10.1002/ijch.197900047}}</ref><ref name="Ref 4">{{cite book|last=V. A. Krongauz|title=Electro-Optics and Dielectrics of Macromolecules and Colloids|date=1979|publisher=Springer US|location=U.S.A|isbn=978-1-4684-3497-2|pages=329–336|authorlink=Quasi-Crystals Produced by Colloidal Photochromic Dyes in an Applied Electric Field|editor=B. R. Jennings|doi=10.1007/978-1-4684-3497-2_35|chapter=Quasi-Crystals Produced by Colloidal Photochromic Dyes in an Applied Electric Field}}</ref> In an applied electrostatic field, quasi-crystals form macroscopic threads that show linear optical [[dichroism]].<ref name="Nature" /><ref name="Ref 5">{{cite journal|last=V.A. Krongauz|author2=A.A. Parshutkin |title=The effect of the electric field on photochromism of spiropyrans. The dipole crystallization of a dye along the lines of force|journal= Photochemistry and Photobiology|date=May 1972|volume=15|issue=5|pages=503–507|doi=10.1111/j.1751-1097.1972.tb06261.x}}</ref>


Later Krongauz described unusual phase transitions of molecules composedof [[mesogen]]ic and spiropyran moieties, which he named "quasi-liquidcrystals." A micrograph of their mesophase appeared on the cover of ''Nature ''in a 1984 paper, “Quasi-Liquid Crystals.”<ref name="Ref6">{{cite journal|last=V. A. Krongauz|author2=F. Shvartsman |title=Quasi-liquid crystals|journal=Nature|date=14 June 1984|volume=309|issue=5969 |pages=608–611|doi=10.1038/309608a0|url=http://www.nature.com/nature/journal/v309/n5969/abs/309608a0.html|accessdate=25 April 2014|bibcode = 1984Natur.309..608S }}</ref> The investigation of spiropyran-merocyanineself-organized systems, including macromolecules (see, for example, Fig. 2),has continued over the years.<ref name="Ref 7">{{cite journal|last=T. Wismontski – Knittel|author2=V.A. Krongauz |title=Self-Assembling of Spiropyran Polymers by Zipper Crystallization|journal=Macromolecules|date=November 1985|volume=18|issue=11|pages=2124–2126|doi=10.1021/ma00153a009|url=http://pubs.acs.org/doi/abs/10.1021/ma00153a009?prevSearch=krongauz%252C%2B1985&searchHistoryKey=|accessdate=25 April 2014|bibcode = 1985MaMol..18.2124W }}</ref><ref name="Ref 8">{{cite journal|last=V. A. Krongauz|author2=F. P. Shvartsman |author3=I. R. Cabrera |author4=A. L. Weis |author5=E. J. Wachtel |title=Investigation of the quasi-liquid crystal structure|journal=J. Phys. Chem.|date=1985|volume=89|issue=18|pages=3941–3946|doi=10.1021/j100264a037|url=http://pubs.acs.org/doi/abs/10.1021/j100264a037?prevSearch=krongauz%252C%2B1978&searchHistoryKey=|accessdate=25 April 2014}}</ref><ref name="Ref 9">{{cite journal|last=I. Cabrera|author2=V. A. Krongauz |title=Dynamic ordering of aggregated mesomorphic macromolecules|journal=Nature|volume=326 |date=9 April 1987|issue=362|pages=582–585|doi=10.1038/326582a0|url=http://www.nature.com/nature/journal/v326/n6113/abs/326582a0.html|accessdate=25 April 2014|bibcode = 1987Natur.326..582C }}</ref><ref name="Ref 10">{{cite journal|last=I. Cabrera|author2=V. A. Krongauz |author3=H. Ringsdorf |title=Photo- and Thermochromic Liquid Crystal Polysiloxanes|journal=Angew. Chem. Int. Ed. Engl.|date=November 1987|volume=26|issue=11|pages=1178–1180|doi=10.1002/anie.198711781|url=http://onlinelibrary.wiley.com/doi/10.1002/anie.198711781/abstract|accessdate=25 April 2014}}</ref><ref name="Ref 11">{{cite book|last=V. A. Krongauz|title=Photochromic Liquid Crystal Polymers in Applied Photochromic Polymer Systems|date=1992|publisher=Springer Science, Blackie & Son Ltd.|location=New York|isbn=9780412029714|pages=121–171|url=https://books.google.com/books/about/Applied_photochromic_polymer_systems.html?id=7jVRAAAAMAAJ|editor=C. B. McArdle}}</ref>
Later Krongauz described unusual phase transitions of molecules composedof [[mesogen]]ic and spiropyran moieties, which he named "quasi-liquidcrystals." A micrograph of their mesophase appeared on the cover of ''Nature ''in a 1984 paper, “Quasi-Liquid Crystals.”<ref name="Ref6">{{cite journal|last=V. A. Krongauz|author2=F. Shvartsman |title=Quasi-liquid crystals|journal=Nature|date=14 June 1984|volume=309|issue=5969 |pages=608–611|doi=10.1038/309608a0|url=http://www.nature.com/nature/journal/v309/n5969/abs/309608a0.html|accessdate=25 April 2014|bibcode = 1984Natur.309..608S }}</ref> The investigation of spiropyran-merocyanineself-organized systems, including macromolecules (see, for example, Fig. 2),has continued over the years.<ref name="Ref 7">{{cite journal|last=T. Wismontski – Knittel|author2=V.A. Krongauz |title=Self-Assembling of Spiropyran Polymers by Zipper Crystallization|journal=Macromolecules|date=November 1985|volume=18|issue=11|pages=2124–2126|doi=10.1021/ma00153a009|bibcode = 1985MaMol..18.2124W }}</ref><ref name="Ref 8">{{cite journal|last=V. A. Krongauz|author2=F. P. Shvartsman |author3=I. R. Cabrera |author4=A. L. Weis |author5=E. J. Wachtel |title=Investigation of the quasi-liquid crystal structure|journal=J. Phys. Chem.|date=1985|volume=89|issue=18|pages=3941–3946|doi=10.1021/j100264a037}}</ref><ref name="Ref 9">{{cite journal|last=I. Cabrera|author2=V. A. Krongauz |title=Dynamic ordering of aggregated mesomorphic macromolecules|journal=Nature|volume=326 |date=9 April 1987|issue=362|pages=582–585|doi=10.1038/326582a0|url=http://www.nature.com/nature/journal/v326/n6113/abs/326582a0.html|accessdate=25 April 2014|bibcode = 1987Natur.326..582C }}</ref><ref name="Ref 10">{{cite journal|last=I. Cabrera|author2=V. A. Krongauz |author3=H. Ringsdorf |title=Photo- and Thermochromic Liquid Crystal Polysiloxanes|journal=Angew. Chem. Int. Ed. Engl.|date=November 1987|volume=26|issue=11|pages=1178–1180|doi=10.1002/anie.198711781}}</ref><ref name="Ref 11">{{cite book|last=V. A. Krongauz|title=Photochromic Liquid Crystal Polymers in Applied Photochromic Polymer Systems|date=1992|publisher=Springer Science, Blackie & Son Ltd.|location=New York|isbn=9780412029714|pages=121–171|url=https://books.google.com/books/about/Applied_photochromic_polymer_systems.html?id=7jVRAAAAMAAJ|editor=C. B. McArdle}}</ref>
[[File:Quasicrystals Fig-2.jpg|thumbnail|Figure 2. Illustration of Self-Assembling Spiropyran Polymers by Zipper Crystallization<ref name="Ref 7" />]]
[[File:Quasicrystals Fig-2.jpg|thumbnail|Figure 2. Illustration of Self-Assembling Spiropyran Polymers by Zipper Crystallization<ref name="Ref 7" />]]
These studies have resulted in discoveries of unusual and practically significant phenomena. Thus, in the electrostatic field, quasi-crystals and quasi-liquid crystals have exhibited 2nd order non-linear optical properties.<ref name="Ref 12">{{cite journal|last=V. A. Krongauz|author2=G. R. Meredith |author3=D. J. Williams |author4=S. N. Fishman |author5=E. S. Goldburt |title=Optical frequency doubling and the internal structure of quasi-crystals|journal=J. Phys. Chem.|date=1983|volume=87|issue=10|pages=1697–1701|doi=10.1021/j100233a012|url=http://pubs.acs.org/doi/abs/10.1021/j100233a012?prevSearch=quasicrystals%2BKrongauz&searchHistoryKey=|accessdate=25 April 2014}}</ref><ref name="Ref 13">{{cite book|title=Second-Order Nonlinear Media from Spiropyran Merocyanine Quasicrystals in Nonlinear Optical Properties of Organic and Polymeric Materials|volume=233|date=1983|publisher=AMERICAN CHEMICAL SOCIETY|isbn=9780841208025|pages=135–152|url=http://cdn-pubs.acs.org/doi/abs/10.1021/bk-1983-0233.ch006|author=V. A. Krongauz |author2=G. R. Meredith |author3=D. J. Williams |author4=S. N. Fishman |author5=E. S. Goldburt |editor=D. J. Williams|accessdate=25 April 2014|chapter=6|doi=10.1021/bk-1983-0233.ch006|series=ACS Symposium Series}}</ref><ref name="Ref 14">{{cite journal|last=V. A. Krongauz |author2=H. Hsiung |author3=Th. Rasing |author4=Y.R. Shen |author5=F. P. Shvartsman |author6=I. Cabrera |title=Polar ordering of quasiliquid crystals—An optical second harmonic generation study|journal=J. Chem. Phys.|date=1987|volume=87|issue=5|page=3127|url=http://scitation.aip.org/content/aip/journal/jcp/87/5/10.1063/1.453050|accessdate=25 April 2014|bibcode = 1987JChPh..87.3127H |doi = 10.1063/1.453050 }}</ref>
These studies have resulted in discoveries of unusual and practically significant phenomena. Thus, in the electrostatic field, quasi-crystals and quasi-liquid crystals have exhibited 2nd order non-linear optical properties.<ref name="Ref 12">{{cite journal|last=V. A. Krongauz|author2=G. R. Meredith |author3=D. J. Williams |author4=S. N. Fishman |author5=E. S. Goldburt |title=Optical frequency doubling and the internal structure of quasi-crystals|journal=J. Phys. Chem.|date=1983|volume=87|issue=10|pages=1697–1701|doi=10.1021/j100233a012}}</ref><ref name="Ref 13">{{cite book|title=Second-Order Nonlinear Media from Spiropyran Merocyanine Quasicrystals in Nonlinear Optical Properties of Organic and Polymeric Materials|volume=233|date=1983|publisher=AMERICAN CHEMICAL SOCIETY|isbn=9780841208025|pages=135–152|author=V. A. Krongauz |author2=G. R. Meredith |author3=D. J. Williams |author4=S. N. Fishman |author5=E. S. Goldburt |editor=D. J. Williams|chapter=6|doi=10.1021/bk-1983-0233.ch006|series=ACS Symposium Series}}</ref><ref name="Ref 14">{{cite journal|last=V. A. Krongauz |author2=H. Hsiung |author3=Th. Rasing |author4=Y.R. Shen |author5=F. P. Shvartsman |author6=I. Cabrera |title=Polar ordering of quasiliquid crystals—An optical second harmonic generation study|journal=J. Chem. Phys.|date=1987|volume=87|issue=5|page=3127|bibcode = 1987JChPh..87.3127H |doi = 10.1063/1.453050 |hdl=2066/92707 }}</ref>


Potential applications of these fascinating materials have been described and patented.<ref name="Ref 15">{{cite journal|last=G. Berkovic|author2=V. A. Krongauz |author3=V. Weiss |title=Spiropyrans and Spirooxazines for Memories and Switches|journal=Chem. Rev.|date=2000|volume=100|issue=5|pages=1741–1754|doi=10.1021/cr9800715|pmid=11777418 |url=http://pubs.acs.org/doi/abs/10.1021/cr9800715?prevSearch=krongauz%252C%2B2000&searchHistoryKey=|accessdate=25 April 2014}}</ref><ref name="Ref 16">{{ cite patent
Potential applications of these fascinating materials have been described and patented.<ref name="Ref 15">{{cite journal|last=G. Berkovic|author2=V. A. Krongauz |author3=V. Weiss |title=Spiropyrans and Spirooxazines for Memories and Switches|journal=Chem. Rev.|date=2000|volume=100|issue=5|pages=1741–1754|doi=10.1021/cr9800715|pmid=11777418 }}</ref><ref name="Ref 16">{{ cite patent
| country =
| country =
| number =US4405733 A
| number =US4405733 A
Line 45: Line 45:
}}</ref>
}}</ref>


Work on spiropyran-merocyanine [[Molecular self-assembly|self-assemblies]] currently continues in several laboratories –see, for example,reference [18] and the references cited in that study.<ref name="Ref 18">{{cite journal|last=R. Klajn|title=Spiropyran-based dynamic materials|journal=Chem. Soc. Rev.|date=2014|volume=43|pages=148–184|doi=10.1039/C3CS60181A|url=http://pubs.rsc.org/en/content/articlehtml/2014/cs/c3cs60181a|accessdate=26 April 2014}}</ref>
Work on spiropyran-merocyanine [[Molecular self-assembly|self-assemblies]] currently continues in several laboratories –see, for example,reference [18] and the references cited in that study.<ref name="Ref 18">{{cite journal|last=R. Klajn|title=Spiropyran-based dynamic materials|journal=Chem. Soc. Rev.|date=2014|volume=43|issue=1|pages=148–184|doi=10.1039/C3CS60181A|pmid=23979515|url=http://pubs.rsc.org/en/content/articlehtml/2014/cs/c3cs60181a|accessdate=26 April 2014}}</ref>


==References==
==References==

Revision as of 08:09, 2 February 2019

Quasi-crystals are supramolecular aggregates exhibiting both crystalline (solid) properties as well as amorphous, liquid-like properties.

Self-organized structures termed "quasi-crystals" were originally described in 1978 by the Israeli scientist Valeri A. Krongauz of the Weizmann Institute of Science, in the Nature paper, Quasi-crystals from irradiated photochromic dyes in an applied electric field. [1]

Scheme 1. Formation of merocyanine dipoles upon irradiation

In his 1978 paper Krongauz coined the term “Quasi-Crystals” for the new self-organized colloidal particles . The Quasi-crystals are supramolecular aggregates manifesting both crystalline properties e.g. Bragg scattering, as well as amorphous, liquid-like properties i.e. drop-like shapes, fluidity, extensibility and elasticity in electric field. The supramolecular Quasi-crystals are produced in photochemical reaction by exposing solutions of photochromic spiropyran molecules to UV radiation. The ultraviolet light induces the conversion of the spiropyrans to merocyanine molecules that manifest electric dipole moments. (see Scheme 1). The quasi-crystals have external shape of submicron globules and their internal structure consists of crystals enveloped by an amorphous matter(see Fig. 1). The crystals are formed by self-assembled stacks of the merocyanine molecular dipoles aligning themselves in a parallel manner, while amorphous envelopes consist of the same merocyanine dipoles aligned in an anti-parallel manner (Fig.1, Scheme2).[2][3][4] In an applied electrostatic field, quasi-crystals form macroscopic threads that show linear optical dichroism.[1][5]

Later Krongauz described unusual phase transitions of molecules composedof mesogenic and spiropyran moieties, which he named "quasi-liquidcrystals." A micrograph of their mesophase appeared on the cover of Nature in a 1984 paper, “Quasi-Liquid Crystals.”[6] The investigation of spiropyran-merocyanineself-organized systems, including macromolecules (see, for example, Fig. 2),has continued over the years.[7][8][9][10][11]

Figure 2. Illustration of Self-Assembling Spiropyran Polymers by Zipper Crystallization[7]

These studies have resulted in discoveries of unusual and practically significant phenomena. Thus, in the electrostatic field, quasi-crystals and quasi-liquid crystals have exhibited 2nd order non-linear optical properties.[12][13][14]

Potential applications of these fascinating materials have been described and patented.[15][16][17]

Work on spiropyran-merocyanine self-assemblies currently continues in several laboratories –see, for example,reference [18] and the references cited in that study.[18]

References

  1. ^ a b V. A. Krongauz; E. S. Goldburt (5 January 1978). "Quasi-crystals from irradiated photochromic dyes in an applied electric field". Nature. 271 (5640): 43–45. Bibcode:1978Natur.271...40V. doi:10.1038/271040b0. Retrieved 24 April 2014.
  2. ^ V. A. Krongauz; S. N. Fishman; E. S. Goldburt (1978). "Quasi-crystals. Growth from photochromic spiropyrans on irradiation in a constant electric field". J. Phys. Chem. 82 (23): 2469–2474. doi:10.1021/j100512a004.
  3. ^ V. A. Krongauz (1979). "Quasi-Crystals". Israel Journal of Chemistry. 18 (3–4): 304–311. doi:10.1002/ijch.197900047.
  4. ^ V. A. Krongauz (1979). "Quasi-Crystals Produced by Colloidal Photochromic Dyes in an Applied Electric Field". In B. R. Jennings (ed.). Electro-Optics and Dielectrics of Macromolecules and Colloids. U.S.A: Springer US. pp. 329–336. doi:10.1007/978-1-4684-3497-2_35. ISBN 978-1-4684-3497-2.
  5. ^ V.A. Krongauz; A.A. Parshutkin (May 1972). "The effect of the electric field on photochromism of spiropyrans. The dipole crystallization of a dye along the lines of force". Photochemistry and Photobiology. 15 (5): 503–507. doi:10.1111/j.1751-1097.1972.tb06261.x.
  6. ^ V. A. Krongauz; F. Shvartsman (14 June 1984). "Quasi-liquid crystals". Nature. 309 (5969): 608–611. Bibcode:1984Natur.309..608S. doi:10.1038/309608a0. Retrieved 25 April 2014.
  7. ^ a b T. Wismontski – Knittel; V.A. Krongauz (November 1985). "Self-Assembling of Spiropyran Polymers by Zipper Crystallization". Macromolecules. 18 (11): 2124–2126. Bibcode:1985MaMol..18.2124W. doi:10.1021/ma00153a009.
  8. ^ V. A. Krongauz; F. P. Shvartsman; I. R. Cabrera; A. L. Weis; E. J. Wachtel (1985). "Investigation of the quasi-liquid crystal structure". J. Phys. Chem. 89 (18): 3941–3946. doi:10.1021/j100264a037.
  9. ^ I. Cabrera; V. A. Krongauz (9 April 1987). "Dynamic ordering of aggregated mesomorphic macromolecules". Nature. 326 (362): 582–585. Bibcode:1987Natur.326..582C. doi:10.1038/326582a0. Retrieved 25 April 2014.
  10. ^ I. Cabrera; V. A. Krongauz; H. Ringsdorf (November 1987). "Photo- and Thermochromic Liquid Crystal Polysiloxanes". Angew. Chem. Int. Ed. Engl. 26 (11): 1178–1180. doi:10.1002/anie.198711781.
  11. ^ V. A. Krongauz (1992). C. B. McArdle (ed.). Photochromic Liquid Crystal Polymers in Applied Photochromic Polymer Systems. New York: Springer Science, Blackie & Son Ltd. pp. 121–171. ISBN 9780412029714.
  12. ^ V. A. Krongauz; G. R. Meredith; D. J. Williams; S. N. Fishman; E. S. Goldburt (1983). "Optical frequency doubling and the internal structure of quasi-crystals". J. Phys. Chem. 87 (10): 1697–1701. doi:10.1021/j100233a012.
  13. ^ V. A. Krongauz; G. R. Meredith; D. J. Williams; S. N. Fishman; E. S. Goldburt (1983). "6". In D. J. Williams (ed.). Second-Order Nonlinear Media from Spiropyran Merocyanine Quasicrystals in Nonlinear Optical Properties of Organic and Polymeric Materials. ACS Symposium Series. Vol. 233. AMERICAN CHEMICAL SOCIETY. pp. 135–152. doi:10.1021/bk-1983-0233.ch006. ISBN 9780841208025.
  14. ^ V. A. Krongauz; H. Hsiung; Th. Rasing; Y.R. Shen; F. P. Shvartsman; I. Cabrera (1987). "Polar ordering of quasiliquid crystals—An optical second harmonic generation study". J. Chem. Phys. 87 (5): 3127. Bibcode:1987JChPh..87.3127H. doi:10.1063/1.453050. hdl:2066/92707.
  15. ^ G. Berkovic; V. A. Krongauz; V. Weiss (2000). "Spiropyrans and Spirooxazines for Memories and Switches". Chem. Rev. 100 (5): 1741–1754. doi:10.1021/cr9800715. PMID 11777418.
  16. ^ A Lapsed US4405733 A, David J. Williams, Gerald R. Meredith, George R. Olin, "Composite quasi-crystalline material", published 1983-9-20, assigned to Xerox Corporation 
  17. ^ A Lapsed US4927917 A, Valeri A. Krongauz, Felix P. Shvartsman, "Quasi-liquid crystals", published 1990-5-22, assigned to Yeda Research And Development Co., Ltd. 
  18. ^ R. Klajn (2014). "Spiropyran-based dynamic materials". Chem. Soc. Rev. 43 (1): 148–184. doi:10.1039/C3CS60181A. PMID 23979515. Retrieved 26 April 2014.