Bioelectronics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m two punctuation errors
No edit summary
Line 10: Line 10:


==History==
==History==
The first known study of bioelectronics took place in the 18th century, when scientist Luigi Galvani applied a voltage to a pair of detached frog legs. The legs moved, sparking the genesis of bioelectronics.<ref name=":0">{{Cite journal|last=Rivnay|first=Jonathan|last2=Owens|first2=Róisín M.|last3=Malliaras|first3=George G.|date=2014-01-14|title=The Rise of Organic Bioelectronics|url=http://pubs.acs.org/doi/10.1021/cm4022003|journal=Chemistry of Materials|volume=26|issue=1|pages=679–685|doi=10.1021/cm4022003|issn=0897-4756}}</ref> Electronics technology has been applied to biology and medicine since the pacemaker was invented and with the medical imaging industry. In 2009, a survey of publications using the term in title or abstract suggested that the center of activity was in Europe (43 percent), followed by Asia (23 percent) and the United States (20 percent).<ref name=nist/>{{rp|6}}
The first known study of bioelectronics took place in the 18th century, when scientist Luigi Galvani applied a voltage to a pair of detached frog legs. The legs moved, sparking the genesis of bioelectronics.<ref name=":0">{{Cite journal|last=Rivnay|first=Jonathan|last2=Owens|first2=Róisín M.|last3=Malliaras|first3=George G.|date=2014-01-14|title=The Rise of Organic Bioelectronics |journal=Chemistry of Materials|volume=26|issue=1|pages=679–685|doi=10.1021/cm4022003 }}</ref> Electronics technology has been applied to biology and medicine since the pacemaker was invented and with the medical imaging industry. In 2009, a survey of publications using the term in title or abstract suggested that the center of activity was in Europe (43 percent), followed by Asia (23 percent) and the United States (20 percent).<ref name=nist/>{{rp|6}}


== Materials ==
== Materials ==
Organic bioelectronics is the application of organic electronic material to the field of bioelectronics. Organic materials (i.e. containing carbon) show great promise when it comes to interfacing with biological systems.<ref>{{cite journal|last1=Owens|first1=Róisín|last2=Kjall|first2=Peter|last3=Richter-Dahlfors|first3=Agneta|last4=Cicoira|first4=Fabio|title=Organic bioelectronics — Novel applications in biomedicine|journal=Biochimica et Biophysica Acta|date=September 2013|volume=1830|issue=9|pages=4283–4285|doi=10.1016/j.bbagen.2013.04.025|pmid=23623969|url=http://www.sciencedirect.com/science/article/pii/S0304416513001657|accessdate=17 February 2016}}</ref> Current applications focus around neuroscience<ref>{{cite journal|last1=Simon|first1=Daniel|last2=Larsson|first2=Karin|last3=Nilsson|first3=David|last4=Burström|first4=Gustav|last5=Galter|first5=Dagmar|last6=Berggren|first6=Magnus|last7=Richter-Dahlfors|first7=Agneta|title=An organic electronic biomimetic neuron enables auto-regulated neuromodulation|journal=Biosensors and Bioelectronics|date=15 September 2015|volume=71|pages=359–64|doi=10.1016/j.bios.2015.04.058|pmid=25932795|url=http://www.sciencedirect.com/science/article/pii/S0956566315300610|accessdate=17 February 2016}}</ref><ref>{{cite journal|last1=Jonsson|first1=Amanda|last2=Song|first2=Zhiyang|last3=Nilsson|first3=David|last4=Meyerson|first4=Björn|last5=Simon|first5=Daniel|last6=Linderoth|first6=Bengt|last7=Berggren|first7=Magnus|title=Therapy using implanted organic bioelectronics|journal=Sci. Adv.|date=May 2015|page=e1500039|doi=10.1126/sciadv.1500039|pmid=26601181|pmc=4640645|volume=1|issue=4}}</ref> and infection.<ref>{{cite journal|last1=Löffler|first1=Susanne|last2=Libberton|first2=Ben|last3=Richter-Dahlfors|first3=Agneta|title=Organic bioelectronics in infection|journal=Journal of Materials Chemistry B|volume=3|issue=25|pages=4979–4992|doi=10.1039/C5TB00382B|url=http://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00382b#!divAbstract|accessdate=17 February 2016|year=2015}}</ref><ref>{{cite journal|last1=Löffler|first1=Susanne|last2=Libberton|first2=Ben|last3=Richter-Dahlfors|first3=Agneta|title=Organic Bioelectronic Tools for Biomedical Applications|journal=Electronics|date=November 2015|volume=4|issue=4|pages=879–908|doi=10.3390/electronics4040879|url=http://www.mdpi.com/2079-9292/4/4/879|accessdate=17 February 2016}}</ref>
Organic bioelectronics is the application of organic electronic material to the field of bioelectronics. Organic materials (i.e. containing carbon) show great promise when it comes to interfacing with biological systems.<ref>{{cite journal|last1=Owens|first1=Róisín|last2=Kjall|first2=Peter|last3=Richter-Dahlfors|first3=Agneta|last4=Cicoira|first4=Fabio|title=Organic bioelectronics — Novel applications in biomedicine|journal=Biochimica et Biophysica Acta|date=September 2013|volume=1830|issue=9|pages=4283–4285|doi=10.1016/j.bbagen.2013.04.025|pmid=23623969 }}</ref> Current applications focus around neuroscience<ref>{{cite journal|last1=Simon|first1=Daniel|last2=Larsson|first2=Karin|last3=Nilsson|first3=David|last4=Burström|first4=Gustav|last5=Galter|first5=Dagmar|last6=Berggren|first6=Magnus|last7=Richter-Dahlfors|first7=Agneta|title=An organic electronic biomimetic neuron enables auto-regulated neuromodulation|journal=Biosensors and Bioelectronics|date=15 September 2015|volume=71|pages=359–64|doi=10.1016/j.bios.2015.04.058|pmid=25932795 }}</ref><ref>{{cite journal|last1=Jonsson|first1=Amanda|last2=Song|first2=Zhiyang|last3=Nilsson|first3=David|last4=Meyerson|first4=Björn|last5=Simon|first5=Daniel|last6=Linderoth|first6=Bengt|last7=Berggren|first7=Magnus|title=Therapy using implanted organic bioelectronics|journal=Sci. Adv.|date=May 2015|page=e1500039|doi=10.1126/sciadv.1500039|pmid=26601181|pmc=4640645|volume=1|issue=4}}</ref> and infection.<ref>{{cite journal|last1=Löffler|first1=Susanne|last2=Libberton|first2=Ben|last3=Richter-Dahlfors|first3=Agneta|title=Organic bioelectronics in infection|journal=Journal of Materials Chemistry B|volume=3|issue=25|pages=4979–4992|doi=10.1039/C5TB00382B |year=2015}}</ref><ref>{{cite journal|last1=Löffler|first1=Susanne|last2=Libberton|first2=Ben|last3=Richter-Dahlfors|first3=Agneta|title=Organic Bioelectronic Tools for Biomedical Applications|journal=Electronics|date=November 2015|volume=4|issue=4|pages=879–908|doi=10.3390/electronics4040879 }}</ref>


Conducting polymer coatings, an organic electronic material, shows massive improvement in the technology of materials. It was the most sophisticated form of electrical stimulation. It improved the impedance of electrodes in electrical stimulation, resulting in better recordings and reducing "harmful electrochemical side reactions." Organic Electrochemical Transistors (OECT) were invented in 1984 by Mark Wrighton and colleagues, which had the ability to transport ions.This improved signal-to-noise ratio and gives for low measured impedance. The Organic Electronic Ion Pump (OEIP), a device that could be used to target specific body parts and organs to adhere medicine, was created by Magnuss Berggren.<ref name=":0" />
Conducting polymer coatings, an organic electronic material, shows massive improvement in the technology of materials. It was the most sophisticated form of electrical stimulation. It improved the impedance of electrodes in electrical stimulation, resulting in better recordings and reducing "harmful electrochemical side reactions." Organic Electrochemical Transistors (OECT) were invented in 1984 by Mark Wrighton and colleagues, which had the ability to transport ions.This improved signal-to-noise ratio and gives for low measured impedance. The Organic Electronic Ion Pump (OEIP), a device that could be used to target specific body parts and organs to adhere medicine, was created by Magnuss Berggren.<ref name=":0" />


As one of the few materials well established in CMOS technology, titanium nitride (TiN) turned out as exceptionally stable and well suited for electrode applications in medical implants.<ref name="Haemmerle2002">{{cite journal |author1=H. Hämmerle |author2=K. Kobuch |author3=K. Kohler |author4=W. Nisch |author5=H. Sachs |author6=M. Stelzle | title = Biostability of micro-photodiode arrays for subretinal implantation | journal = Biomat. | volume = 23 |issue=3 | pages = 797–804 | year = 2002 | doi = 10.1016/S0142-9612(01)00185-5 }}</ref><ref name="SCT2010">{{cite journal |author1=M. Birkholz |author2=K.-E. Ehwald |author3=D. Wolansky |author4=I. Costina |author5=C. Baristyran-Kaynak |author6=M. Fröhlich |author7=H. Beyer |author8=A. Kapp |author9=F. Lisdat | title = Corrosion-resistant metal layers from a CMOS process for bioelectronic applications | journal = Surf. Coat. Technol. | volume = 204 | pages = 2055–2059 | year = 2010 | doi = 10.1016/j.surfcoat.2009.09.075 | url=https://www.researchgate.net/publication/230817001 | issue = 12–13}}</ref>
As one of the few materials well established in CMOS technology, titanium nitride (TiN) turned out as exceptionally stable and well suited for electrode applications in medical implants.<ref name="Haemmerle2002">{{cite journal |author1=H. Hämmerle |author2=K. Kobuch |author3=K. Kohler |author4=W. Nisch |author5=H. Sachs |author6=M. Stelzle | title = Biostability of micro-photodiode arrays for subretinal implantation | journal = Biomat. | volume = 23 |issue=3 | pages = 797–804 | year = 2002 | doi = 10.1016/S0142-9612(01)00185-5 }}</ref><ref name="SCT2010">{{cite journal |doi=10.1016/j.surfcoat.2009.09.075 }}</ref>


== Significant Applications ==
== Significant Applications ==
Bioelectronics is used to help improve the lives of people with disabilities and diseases. For example, the glucose monitor is a portable device that allows diabetic patients to control and measure their blood sugar levels.<ref name=":0" /> Electrical stimulation used to treat patients with epilepsy, chronic pain, Parkinson's, deafness, and blindness.<ref>{{Cite journal|last=Simon|first=Daniel T.|last2=Gabrielsson|first2=Erik O.|last3=Tybrandt|first3=Klas|last4=Berggren|first4=Magnus|date=2016-11-09|title=Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology|url=http://pubs.acs.org/doi/10.1021/acs.chemrev.6b00146|journal=Chemical Reviews|volume=116|issue=21|pages=13009–13041|doi=10.1021/acs.chemrev.6b00146|issn=0009-2665}}</ref> Magnuss Berggren and colleagues created a variation of his OEIP, the first bioelectronic implant device that was used in a living, free animal for therapeutic reasons. It transmitted electric currents into GABA, an acid. A lack of GABA in the body is a factor in chronic pain. GABA would then be dispersed properly to the damaged nerves, acting as a painkiller.<ref>{{Cite journal|last=Jonsson|first=Amanda|last2=Song|first2=Zhiyang|last3=Nilsson|first3=David|last4=Meyerson|first4=Björn A.|last5=Simon|first5=Daniel T.|last6=Linderoth|first6=Bengt|last7=Berggren|first7=Magnus|date=May 2015|title=Therapy using implanted organic bioelectronics|url=http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1500039|journal=Science Advances|volume=1|issue=4|pages=e1500039|doi=10.1126/sciadv.1500039|issn=2375-2548|pmc=4640645|pmid=26601181}}</ref> Vagus Nerve Stimulation (VNS) is used to activate the Cholinergic Anti-inflammatory Pathway (CAP) in the Vagus Nerve, ending in reduced inflammation in patients with diseases like arthritis. Since patients with depression and epilepsy are more vulnerable to having a closed CAP, VNS can aid them as well.<ref>{{Cite web|url=https://www.sciencedirect.com/science/article/pii/S1521694214000977|title=ScienceDirect|website=www.sciencedirect.com|access-date=2019-03-14}}</ref>
Bioelectronics is used to help improve the lives of people with disabilities and diseases. For example, the glucose monitor is a portable device that allows diabetic patients to control and measure their blood sugar levels.<ref name=":0" /> Electrical stimulation used to treat patients with epilepsy, chronic pain, Parkinson's, deafness, and blindness.<ref>{{Cite journal|last=Simon|first=Daniel T.|last2=Gabrielsson|first2=Erik O.|last3=Tybrandt|first3=Klas|last4=Berggren|first4=Magnus|date=2016-11-09|title=Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology |journal=Chemical Reviews|volume=116|issue=21|pages=13009–13041|doi=10.1021/acs.chemrev.6b00146 }}</ref> Magnuss Berggren and colleagues created a variation of his OEIP, the first bioelectronic implant device that was used in a living, free animal for therapeutic reasons. It transmitted electric currents into GABA, an acid. A lack of GABA in the body is a factor in chronic pain. GABA would then be dispersed properly to the damaged nerves, acting as a painkiller.<ref>{{Cite journal|last=Jonsson|first=Amanda|last2=Song|first2=Zhiyang|last3=Nilsson|first3=David|last4=Meyerson|first4=Björn A.|last5=Simon|first5=Daniel T.|last6=Linderoth|first6=Bengt|last7=Berggren|first7=Magnus|date=May 2015|title=Therapy using implanted organic bioelectronics |journal=Science Advances|volume=1|issue=4|pages=e1500039|doi=10.1126/sciadv.1500039 |pmc=4640645|pmid=26601181}}</ref> Vagus Nerve Stimulation (VNS) is used to activate the Cholinergic Anti-inflammatory Pathway (CAP) in the Vagus Nerve, ending in reduced inflammation in patients with diseases like arthritis. Since patients with depression and epilepsy are more vulnerable to having a closed CAP, VNS can aid them as well.<ref>{{cite journal |doi=10.1016/j.berh.2014.10.015 }}</ref>


==See also ==
==See also ==

Revision as of 02:54, 17 March 2019

Bioelectronics is a field of research in the convergence of biology and electronics.

Definitions

A ribosome is a biological machine that utilizes protein dynamics

At the first C.E.C. Workshop, in Brussels in November 1991, bioelectronics was defined as 'the use of biological materials and biological architectures for information processing systems and new devices'. Bioelectronics, specifically bio-molecular electronics, were described as 'the research and development of bio-inspired (i.e. self-assembly) inorganic and organic materials and of bio-inspired (i.e. massive parallelism) hardware architectures for the implementation of new information processing systems, sensors and actuators, and for molecular manufacturing down to the atomic scale'.[1] The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, defined bioelectronics in a 2009 report as "the discipline resulting from the convergence of biology and electronics".[2]: 5 

Sources for information about the field include the Institute of Electrical and Electronics Engineers (IEEE) with its Elsevier journal Biosensors and Bioelectronics published since 1990. The journal describes the scope of bioelectronics as seeking to : "... exploit biology in conjunction with electronics in a wider context encompassing, for example, biological fuel cells, bionics and biomaterials for information processing, information storage, electronic components and actuators. A key aspect is the interface between biological materials and micro- and nano-electronics."[3]

History

The first known study of bioelectronics took place in the 18th century, when scientist Luigi Galvani applied a voltage to a pair of detached frog legs. The legs moved, sparking the genesis of bioelectronics.[4] Electronics technology has been applied to biology and medicine since the pacemaker was invented and with the medical imaging industry. In 2009, a survey of publications using the term in title or abstract suggested that the center of activity was in Europe (43 percent), followed by Asia (23 percent) and the United States (20 percent).[2]: 6 

Materials

Organic bioelectronics is the application of organic electronic material to the field of bioelectronics. Organic materials (i.e. containing carbon) show great promise when it comes to interfacing with biological systems.[5] Current applications focus around neuroscience[6][7] and infection.[8][9]

Conducting polymer coatings, an organic electronic material, shows massive improvement in the technology of materials. It was the most sophisticated form of electrical stimulation. It improved the impedance of electrodes in electrical stimulation, resulting in better recordings and reducing "harmful electrochemical side reactions." Organic Electrochemical Transistors (OECT) were invented in 1984 by Mark Wrighton and colleagues, which had the ability to transport ions.This improved signal-to-noise ratio and gives for low measured impedance. The Organic Electronic Ion Pump (OEIP), a device that could be used to target specific body parts and organs to adhere medicine, was created by Magnuss Berggren.[4]

As one of the few materials well established in CMOS technology, titanium nitride (TiN) turned out as exceptionally stable and well suited for electrode applications in medical implants.[10][11]

Significant Applications

Bioelectronics is used to help improve the lives of people with disabilities and diseases. For example, the glucose monitor is a portable device that allows diabetic patients to control and measure their blood sugar levels.[4] Electrical stimulation used to treat patients with epilepsy, chronic pain, Parkinson's, deafness, and blindness.[12] Magnuss Berggren and colleagues created a variation of his OEIP, the first bioelectronic implant device that was used in a living, free animal for therapeutic reasons. It transmitted electric currents into GABA, an acid. A lack of GABA in the body is a factor in chronic pain. GABA would then be dispersed properly to the damaged nerves, acting as a painkiller.[13] Vagus Nerve Stimulation (VNS) is used to activate the Cholinergic Anti-inflammatory Pathway (CAP) in the Vagus Nerve, ending in reduced inflammation in patients with diseases like arthritis. Since patients with depression and epilepsy are more vulnerable to having a closed CAP, VNS can aid them as well.[14]

See also

Future

The improvement of standards and tools to monitor the state of cells at subcellular resolutions is lacking funding and employment. This is a problem because advances in other fields of science are beginning to analyze large cell populations, increasing the need for a device that can monitor cells at such a level of sight. Cells cannot be used in many ways other than their main purpose, like detecting harmful substances. Merging this science with forms of nanotechnology could result in incredibly accurate detection methods. The preserving of human lives like protecting against bioterrorism is the biggest area of work being done in bioelectronics. Governments are starting to demand devices and materials that detect chemical and biological threats. The more the size of the devices decrease, there will be an increase in performance and capabilities.[2]

References

  1. ^ Nicolini, C (1995). "From neural chip and engineered biomolecules to bioelectronic devices: an overview". Biosens Bioelectron. 10 (1–2): 105–27. doi:10.1016/0956-5663(95)96799-5. PMID 7734117.
  2. ^ a b c "A Framework for Bioelectronics: Discovery and Innovation" (PDF). National Institute of Standards and Technology. February 2009. p. 42.
  3. ^ "Biosensors and Bioelectronics". Elsevier.
  4. ^ a b c Rivnay, Jonathan; Owens, Róisín M.; Malliaras, George G. (January 14, 2014). "The Rise of Organic Bioelectronics". Chemistry of Materials. 26 (1): 679–685. doi:10.1021/cm4022003.
  5. ^ Owens, Róisín; Kjall, Peter; Richter-Dahlfors, Agneta; Cicoira, Fabio (September 2013). "Organic bioelectronics — Novel applications in biomedicine". Biochimica et Biophysica Acta. 1830 (9): 4283–4285. doi:10.1016/j.bbagen.2013.04.025. PMID 23623969.
  6. ^ Simon, Daniel; Larsson, Karin; Nilsson, David; Burström, Gustav; Galter, Dagmar; Berggren, Magnus; Richter-Dahlfors, Agneta (September 15, 2015). "An organic electronic biomimetic neuron enables auto-regulated neuromodulation". Biosensors and Bioelectronics. 71: 359–64. doi:10.1016/j.bios.2015.04.058. PMID 25932795.
  7. ^ Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn; Simon, Daniel; Linderoth, Bengt; Berggren, Magnus (May 2015). "Therapy using implanted organic bioelectronics". Sci. Adv. 1 (4): e1500039. doi:10.1126/sciadv.1500039. PMC 4640645. PMID 26601181.
  8. ^ Löffler, Susanne; Libberton, Ben; Richter-Dahlfors, Agneta (2015). "Organic bioelectronics in infection". Journal of Materials Chemistry B. 3 (25): 4979–4992. doi:10.1039/C5TB00382B.
  9. ^ Löffler, Susanne; Libberton, Ben; Richter-Dahlfors, Agneta (November 2015). "Organic Bioelectronic Tools for Biomedical Applications". Electronics. 4 (4): 879–908. doi:10.3390/electronics4040879.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ H. Hämmerle; K. Kobuch; K. Kohler; W. Nisch; H. Sachs; M. Stelzle (2002). "Biostability of micro-photodiode arrays for subretinal implantation". Biomat. 23 (3): 797–804. doi:10.1016/S0142-9612(01)00185-5.
  11. ^ . doi:10.1016/j.surfcoat.2009.09.075. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  12. ^ Simon, Daniel T.; Gabrielsson, Erik O.; Tybrandt, Klas; Berggren, Magnus (November 9, 2016). "Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology". Chemical Reviews. 116 (21): 13009–13041. doi:10.1021/acs.chemrev.6b00146.
  13. ^ Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn A.; Simon, Daniel T.; Linderoth, Bengt; Berggren, Magnus (May 2015). "Therapy using implanted organic bioelectronics". Science Advances. 1 (4): e1500039. doi:10.1126/sciadv.1500039. PMC 4640645. PMID 26601181.
  14. ^ . doi:10.1016/j.berh.2014.10.015. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)

External links

The dictionary definition of bioelectronics at Wiktionary