Jump to content

Theta correspondence: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Opqsp2n (talk | contribs)
The article is largely rewritten, especially the part on local theta correspondence (for precise mathematical statements)
Line 1: Line 1:
In [[mathematics]], the '''theta correspondence''' or '''Howe correspondence''' is a correspondence between [[automorphic form]]s associated to the two groups of a [[dual reductive pair]], introduced by {{harvs|txt|last=Howe|year=1979|authorlink=Roger Evans Howe}} as a generalisation of the [[Shimura correspondence]]. It is a conjectural correspondence between certain representations on the [[metaplectic group]] <math>\mathrm{Mp}(2n)</math> and those on the [[special orthogonal group]] <math>\mathrm{SO}(2n+1)</math>. The case <math>n = 1</math> was constructed by [[Jean-Loup Waldspurger]] in {{harvtxt | Waldspurger | 1980 }} and {{harvtxt | Waldspurger | 1991 }}.
In [[mathematics]], the '''theta correspondence''' or '''Howe correspondence''' is a correspondence between irreducible admissible representations over a [[local field]] and a correspondence of irreducible automorphic representations over a [[global field]], associated to two groups of a [[reductive dual pair]], introduced by [[Roger Evans Howe|Roger Howe]] in {{harvtxt| Howe | 1979}}. The name arose due to its origin in [[André Weil]]’s representation theoretical formulation of the theory of [[theta function|theta series]] in {{harvtxt| Weil | 1964 }}. The [[Shimura correspondence]] as constructed by [[Jean-Loup Waldspurger]] in {{harvtxt | Waldspurger | 1980 }} and {{harvtxt | Waldspurger | 1991 }} may be viewed as an instance of theta correspondence.


== Statement ==
== Statement ==
===Setup===
===Setup===
Let <math>F</math> be a local field of characteristic zero. Fix a non-trivial additive character <math>\psi</math> of <math>F</math>.
Let <math>E</math> be a non-archimedean [[local field]] of characteristic not <math>2</math>, with its quotient field of characteristic <math>p</math>. Let <math>F</math> be a quadratic extension over <math>E</math>. Let <math>V</math> (respectively <math>W</math>) be an <math>n</math>-dimensional [[Hermitian space]] (respectively an <math>m</math>-dimensional Hermitian space) over <math>F</math>. We assume further <math>G(V)</math> (resp. <math>H(W)</math>) to be the [[isometry group]] of <math>V</math> (resp. <math>W</math>). There exists a [[Weil representation]] associated to a non-trivial additive character <math>\psi</math> of <math>F</math> for the pair <math>G(V) \times H(W)</math>, which we write as <math>\rho(\psi)</math>. Let <math>\pi</math> be an irreducible admissible representation of <math>G(V)</math>. Here, we only consider the case <math>G(V) \times H(W) = \mathrm{SO}(n) \times \mathrm{SO}(m)</math> or <math>U(n) \times U(m)</math>. We can find a certain representation <math>\theta(\pi, \psi)</math> of <math>H(W)</math>, which is in fact a certain quotient of the Weil representation <math>\rho(\psi)</math> by <math>\pi</math>.
Let <math>W</math> be a symplectic vector space over <math>F</math>, and <math>Sp(W)</math> the [[symplectic group]].

Given a [[reductive dual pair]] <math>(G,H)</math> in <math>Sp(W)</math>, one obtains a reductive dual pair <math>(\widetilde{G}, \widetilde{H})</math> in the [[metaplectic group]] <math>Mp(W)</math> by pulling back the projection map from <math>Mp(W)</math> to <math>Sp(W)</math>.


===Local theta correspondence===
===Local theta correspondence===
There exists a [[Weil representation]] of the metaplectic group <math>Mp(W)</math> associated to <math>\psi</math>, which we write as <math>\omega_{\psi}</math>.
Let <math>\mathrm{Irr}(G(V))</math> (respectively <math>\mathrm{Irr}(H(W))</math>) be the set of all irreducible admissible representations of <math>G(V)</math> (respectively <math>H(W)</math>). Let <math>\theta</math> be the map <math>\mathrm{Irr}(G(V)) \rightarrow \mathrm{Irr}(H(W))</math>, which associates every irreducible admissible representation <math>\pi</math> of <math>G(V)</math> the irreducible admissible representation <math>\theta(\pi, \psi)</math> of <math>H(W)</math>. We call <math>\theta</math> the local theta correspondence for the pair <math>G(V) \times H(W)</math>.

The local theta correspondence is a 1-1 correspondence between certain irreducible admissible representations of <math>\widetilde{G}</math> and certain irreducible admissible representations of <math>\widetilde{H}</math>, obtained by restricting the Weil representation <math>\omega_{\psi}</math> of <math>Mp(W)</math> to the subgroup <math>\widetilde{G}\cdot\widetilde{H}</math>. The correspondence was defined by [[Roger Evans Howe|Roger Howe]] in {{harvtxt|Howe|1979}}. The assertion that this is a 1-1 correspondence is called the '''Howe duality conjecture'''.


===Global theta correspondence===
===Global theta correspondence===
The global theta lift can be defined on the [[cuspidal representation|cuspidal automorphic representations]] of <math>G(V)</math> as well.{{sfn|Waldspurger|1991}}
The global theta lift can be defined on the [[cuspidal representation|cuspidal automorphic representations]] of <math>G(V)</math> as well.{{sfn|Rallis|1984}}



==Howe duality conjecture==
==Howe duality conjecture==
Define <math>\mathcal{R}(\widetilde{G})</math> the set of irreducible admissible representations of <math>\widetilde{G}</math>, which can be realized as quotients of
The '''Howe duality conjecture''' states that:{{sfn | Gan | Takeda | 2014 }}
<math>\omega_{\psi}</math>. Define <math>\mathcal{R}(\widetilde{H})</math> and <math>\mathcal{R}(\widetilde{G}\cdot\widetilde{H})</math>, likewise.


The '''Howe duality conjecture''' asserts that <math>\mathcal{R}(\widetilde{G}\cdot\widetilde{H})</math> is the graph of a bijection between <math>\mathcal{R}(\widetilde{G})</math> and <math>\mathcal{R}(\widetilde{H})</math>.
(i) <math>\theta(\pi,\psi)</math> is irreducible or <math>0</math>;


The Howe duality conjecture for archimedean fields was proved by [[Roger Evans Howe|Roger Howe]],{{sfn | Howe | 1989 }} and for p-adic fields with <math>p</math> odd was proved by [[Jean-Loup Waldspurger]].{{sfn | Waldspurger | 1990 }} [[Wee Teck Gan]] and Shuichiro Takeda later gave a proof that works for any residue characteristic
(ii) Let <math>\pi, \pi'</math> be two irreducible [[admissible representation]]s of <math>G(V)</math>, such that <math>\theta(\pi, \psi) = \theta(\pi', \psi) \neq 0</math>. Then, <math>\pi = \pi'</math>.
(excluding quaternionic dual pairs).{{sfn | Gan | Takeda | 2016 }} The final case of quaternionic dual pairs (in any residual characteristic) was completed by

[[Wee Teck Gan]] and [[Sun Binyong|Binyong Sun]].{{sfn | Gan | Sun | 2017 }}
The Howe duality conjecture for <math>E</math> with odd residue characteristic was proved by [[Jean-Loup Waldspurger]] in 1990.{{sfn | Waldspurger | 1990 }} [[Wee Teck Gan]] and Shuichiro Takeda gave a proof in 2014 that works for any residue characteristic.{{sfn | Gan | Takeda | 2014 }}

== Etymology ==
Let <math>\theta</math> be the theta correspondence between <math>\mathrm{Mp}(2)</math> and <math>SO(3)</math>. According to {{harvtxt | Waldspurger | 1986}}, one can associate to <math>\theta</math> a function <math>f(\theta)</math>, which can be proved to be a [[modular function]] of half integer weight, that is to say, <math>f(\theta)</math> is a [[theta function]].


==See also==
==See also==
*[[Reductive dual pair]]
*[[Metaplectic group]]
*[[Metaplectic group]]


==References==
==References==
*{{Citation | last1=Howe | first1=Roger | editor1-last=Borel | editor1-first=Armand | editor1-link=Armand Borel | editor2-last=Casselman | editor2-first=W. | title=Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 | url=http://www.ams.org/publications/online-books/pspum331-index | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Proc. Sympos. Pure Math., XXXIII | isbn=978-0-8218-1435-2 | mr=546602 | year=1979 | chapter=θ-series and invariant theory | chapterurl=http://www.ams.org/publications/online-books/pspum331-pspum331-ptII-8.pdf | pages=275–285}}
*{{Citation | first=André | last=Weil | title=Sur certains groupes d'opérateurs unitaires | journal=Acta Math. | volume=111 | year=1964 | pages=143–211 | doi=10.1007/BF02391012
| doi-access=free }}
*{{Citation | last1=Howe | first1=Roger E.| editor1-last=Borel | editor1-first=A. | editor1-link=Armand Borel | editor2-last=Casselman | editor2-first=W. | title=Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 | url=http://www.ams.org/publications/online-books/pspum331-index | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Proc. Sympos. Pure Math., XXXIII | isbn=978-0-8218-1435-2 | mr=546602 | year=1979 | chapter=θ-series and invariant theory | chapterurl=http://www.ams.org/publications/online-books/pspum331-pspum331-ptII-8.pdf | pages=275–285}}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Correspondance de Shimura | journal = J. Math. Pures Appl. | volume = 59 | issue = 9 | year = 1980 | pages = 1–132 }}
*{{citation | last = Rallis | first = Stephen | title = On the Howe duality conjecture | journal = Compositio Math. | volume = 51 | year = 1984 | pages = 333-399 }}
*{{Citation | last1=Mœglin | first1=Colette | last2=Vignéras | first2=Marie-France | last3=Waldspurger | first3=Jean-Loup | title=Correspondances de Howe sur un corps p-adique | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-18699-1 | doi=10.1007/BFb0082712 | mr=1041060 | year=1987 | volume=1291}}
*{{Citation | last1=Mœglin | first1=Colette | last2=Vignéras | first2=Marie-France | last3=Waldspurger | first3=Jean-Loup | title=Correspondances de Howe sur un corps p-adique | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-18699-1 | doi=10.1007/BFb0082712 | mr=1041060 | year=1987 | volume=1291}}
* {{citation|last=Howe|first= Roger E.|year=1989|title=Transcending classical invariant theory|journal= Journal of the American Mathematical Society|volume=2|issue=3|pages= 535&ndash;552|doi=10.2307/1990942|jstor=1990942|publisher=American Mathematical Society|doi-access=free}}.
*{{Citation | last1=Waldspurger | first1=Jean-Loup | title=Représentation métaplectique et conjectures de Howe | url=http://www.numdam.org/item?id=SB_1986-1987__29__85_0 | series=Séminaire Bourbaki 674 | mr=936850 | year=1987 | journal=Astérisque | issn=0303-1179 | volume=152-153 | pages=85–99}}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Correspondance de Shimura | journal = J. Math. Pures Appl. | volume = 59 | issue = 9 | year = 1980 | pages = 1–132 }}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Démonstration d'une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2 | journal = Festschrift in Honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I | series = Israel Math. Conf. Proc. | volume = 2 | year = 1990 | pages = 267–324 }}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Correspondances de Shimura et quaternions | journal = Forum Math. | volume = 3 | issue = 3 | year = 1991 | pages = 219–307 | doi=10.1515/form.1991.3.219}}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Correspondances de Shimura et quaternions | journal = Forum Math. | volume = 3 | issue = 3 | year = 1991 | pages = 219–307 | doi=10.1515/form.1991.3.219}}
*{{citation | last = Waldspurger | first = Jean-Loup | title = Démonstration d'une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2 | journal = Festschrift in Honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I | series = Israel Math. Conf. Proc. | volume = 2 | year = 1990 | pages = 267–324 }}
*{{citation | last1 = Gan | first1 = Wee Teck | last2 = Takeda | first2 = Shuichiro | title = A proof of the Howe duality conjecture | url = http://www.math.nus.edu.sg/~matgwt/howe-duality_JAMS.pdf | journal = J. Amer. Math. Soc. | volume = 29 | number= 2 | year = 2016 | pages = 473-493.}}
*{{citation | last1 = Gan | first1 = Wee Teck | last2 = Takeda | first2 = Shuichiro | title = A proof of the Howe duality conjecture | url = http://www.math.nus.edu.sg/~matgwt/howe-duality_JAMS.pdf | journal = J. Amer. Math. Soc. | volume = 29 | number= 2 | year = 2016 | pages = 473-493.}}
*{{citation | last1 = Gan | first1 = Wee Teck | last2 = Li | first2 = Wen-Wei | title = The Shimura-Waldspurger correspondence for Mp(2n) | arxiv = 1612.05008 | bibcode = 2016arXiv161205008T }}
*{{citation | last1 = Gan | first1 = Wee Teck | last2 = Sun | first2 = Binyong | editor1-last=Cogdell | editor1-first=J. |editor2-last=Kim |editor2-first=J.-L. | editor3-last=Zhu |editor3-first=C.-B. | title = Representation Theory, Number Theory, and Invariant Theory | series=Progr. Math., 323 | publisher=Birkhäuser/Springer | year = 2017 | chapter=The Howe duality conjecture: quaternionic case | pages = 175-192.}}


[[Category:Langlands program]]
[[Category:Langlands program]]

Revision as of 13:54, 25 September 2020

In mathematics, the theta correspondence or Howe correspondence is a correspondence between irreducible admissible representations over a local field and a correspondence of irreducible automorphic representations over a global field, associated to two groups of a reductive dual pair, introduced by Roger Howe in Howe (1979). The name arose due to its origin in André Weil’s representation theoretical formulation of the theory of theta series in Weil (1964). The Shimura correspondence as constructed by Jean-Loup Waldspurger in Waldspurger (1980) and Waldspurger (1991) may be viewed as an instance of theta correspondence.

Statement

Setup

Let be a local field of characteristic zero. Fix a non-trivial additive character of . Let be a symplectic vector space over , and the symplectic group.

Given a reductive dual pair in , one obtains a reductive dual pair in the metaplectic group by pulling back the projection map from to .

Local theta correspondence

There exists a Weil representation of the metaplectic group associated to , which we write as .

The local theta correspondence is a 1-1 correspondence between certain irreducible admissible representations of and certain irreducible admissible representations of , obtained by restricting the Weil representation of to the subgroup . The correspondence was defined by Roger Howe in Howe (1979). The assertion that this is a 1-1 correspondence is called the Howe duality conjecture.

Global theta correspondence

The global theta lift can be defined on the cuspidal automorphic representations of as well.[1]

Howe duality conjecture

Define the set of irreducible admissible representations of , which can be realized as quotients of . Define and , likewise.

The Howe duality conjecture asserts that is the graph of a bijection between and .

The Howe duality conjecture for archimedean fields was proved by Roger Howe,[2] and for p-adic fields with odd was proved by Jean-Loup Waldspurger.[3] Wee Teck Gan and Shuichiro Takeda later gave a proof that works for any residue characteristic (excluding quaternionic dual pairs).[4] The final case of quaternionic dual pairs (in any residual characteristic) was completed by Wee Teck Gan and Binyong Sun.[5]

See also

References

  • Weil, André (1964), "Sur certains groupes d'opérateurs unitaires", Acta Math., 111: 143–211, doi:10.1007/BF02391012
  • Howe, Roger E. (1979), "θ-series and invariant theory", in Borel, A.; Casselman, W. (eds.), Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Providence, R.I.: American Mathematical Society, pp. 275–285, ISBN 978-0-8218-1435-2, MR 0546602 {{citation}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  • Waldspurger, Jean-Loup (1980), "Correspondance de Shimura", J. Math. Pures Appl., 59 (9): 1–132
  • Rallis, Stephen (1984), "On the Howe duality conjecture", Compositio Math., 51: 333–399
  • Mœglin, Colette; Vignéras, Marie-France; Waldspurger, Jean-Loup (1987), Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, vol. 1291, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0082712, ISBN 978-3-540-18699-1, MR 1041060
  • Howe, Roger E. (1989), "Transcending classical invariant theory", Journal of the American Mathematical Society, 2 (3), American Mathematical Society: 535–552, doi:10.2307/1990942, JSTOR 1990942.
  • Waldspurger, Jean-Loup (1990), "Démonstration d'une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2", Festschrift in Honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc., 2: 267–324
  • Waldspurger, Jean-Loup (1991), "Correspondances de Shimura et quaternions", Forum Math., 3 (3): 219–307, doi:10.1515/form.1991.3.219
  • Gan, Wee Teck; Takeda, Shuichiro (2016), "A proof of the Howe duality conjecture" (PDF), J. Amer. Math. Soc., 29 (2): 473-493.
  • Gan, Wee Teck; Sun, Binyong (2017), "The Howe duality conjecture: quaternionic case", in Cogdell, J.; Kim, J.-L.; Zhu, C.-B. (eds.), Representation Theory, Number Theory, and Invariant Theory, Progr. Math., 323, Birkhäuser/Springer, pp. 175-192.