OpenFHE: Difference between revisions
m Updated version numbers |
Citation bot (talk | contribs) Alter: template type, pages. Add: s2cid, page, isbn, pages, volume, year, series, title, chapter, doi, chapter-url, author pars. 1-6. Removed or converted URL. Converted bare reference to cite template. Formatted dashes. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by SemperIocundus | via #UCB_webform |
||
Line 47: | Line 47: | ||
|title=Homomorphic Evaluation of the AES Circuit. |
|title=Homomorphic Evaluation of the AES Circuit. |
||
|publisher=Springer, Berlin, Heidelberg |
|publisher=Springer, Berlin, Heidelberg |
||
|conference=CRYPTO 2012 |date=2012 |book-title=Safavi-Naini R., Canetti R. (eds) Advances in Cryptology – CRYPTO 2012 |pages= |
|conference=CRYPTO 2012 |date=2012 |book-title=Safavi-Naini R., Canetti R. (eds) Advances in Cryptology – CRYPTO 2012 |pages=850–867 |doi=10.1007/978-3-642-32009-5_49 |
||
|doi-access=free }}</ref> |
|doi-access=free }}</ref> |
||
** Cheon-Kim-Kim-Song (CKKS) scheme<ref name=CKKS17> |
** Cheon-Kim-Kim-Song (CKKS) scheme<ref name=CKKS17> |
||
Line 67: | Line 67: | ||
|title=A Full RNS Variant of Approximate Homomorphic Encryption |
|title=A Full RNS Variant of Approximate Homomorphic Encryption |
||
|publisher=Springer, Cham |
|publisher=Springer, Cham |
||
|conference=SAC 2018 |date=2018 |book-title=Cid C., Jacobson Jr. M. (eds) Selected Areas in Cryptography – SAC 2018 |pages= |
|conference=SAC 2018 |date=2018 |book-title=Cid C., Jacobson Jr. M. (eds) Selected Areas in Cryptography – SAC 2018 |pages=347–368 |doi=10.1007/978-3-030-10970-7_16 |
||
}}</ref><ref name=BGPRV>M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. [https://eprint.iacr.org/2019/223 Optimized Homomorphic Encryption Solution for Secure Genome-Wide Association Studies], 2019</ref><ref name=HK20>Han K. and Ki D.. [https://eprint.iacr.org/2019/688 Better Bootstrapping for Approximate Homomorphic Encryption], In ''CT-RSA 2020''</ref> |
}}</ref><ref name=BGPRV>M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. [https://eprint.iacr.org/2019/223 Optimized Homomorphic Encryption Solution for Secure Genome-Wide Association Studies], 2019</ref><ref name=HK20>Han K. and Ki D.. [https://eprint.iacr.org/2019/688 Better Bootstrapping for Approximate Homomorphic Encryption], In ''CT-RSA 2020''</ref> |
||
** Ducas-Micciancio (FHEW) scheme<ref name=DM15> |
** Ducas-Micciancio (FHEW) scheme<ref name=DM15> |
||
Line 75: | Line 75: | ||
|title=FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second |
|title=FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second |
||
|publisher=Springer, Berlin, Heidelberg |
|publisher=Springer, Berlin, Heidelberg |
||
|conference=EUROCRYPT 2015 |date=2015 |book-title=Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015 |pages= |
|conference=EUROCRYPT 2015 |date=2015 |book-title=Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015 |pages=617–640 |doi=10.1007/978-3-662-46800-5_24 |
||
}}</ref> for Boolean circuit evaluation with optimizations<ref name=MP>D. Micciancio and Y. Polyakov. [https://eprint.iacr.org/2020/086 Bootstrapping in FHEW-like Cryptosystems], 2020</ref> |
}}</ref> for Boolean circuit evaluation with optimizations<ref name=MP>D. Micciancio and Y. Polyakov. [https://eprint.iacr.org/2020/086 Bootstrapping in FHEW-like Cryptosystems], 2020</ref> |
||
** Chillotti-Gama-Georgieva-Izabachene (TFHE)<ref name=TFHE> |
** Chillotti-Gama-Georgieva-Izabachene (TFHE)<ref name=TFHE> |
||
Line 85: | Line 85: | ||
</ref> scheme for Boolean circuit evaluation with extensions<ref name=MP></ref> |
</ref> scheme for Boolean circuit evaluation with extensions<ref name=MP></ref> |
||
* Multiparty extensions of FHE |
* Multiparty extensions of FHE |
||
** Threshold FHE for BGV, BFV, and CKKS schemes<ref name=Threshold> |
** Threshold FHE for BGV, BFV, and CKKS schemes<ref name=Threshold>{{Cite book|chapter-url=https://link.springer.com/chapter/10.1007/978-3-642-29011-4_29|doi=10.1007/978-3-642-29011-4_29|chapter=Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE|title=Advances in Cryptology – EUROCRYPT 2012|series=Lecture Notes in Computer Science|year=2012|last1=Asharov|first1=Gilad|last2=Jain|first2=Abhishek|last3=López-Alt|first3=Adriana|last4=Tromer|first4=Eran|last5=Vaikuntanathan|first5=Vinod|last6=Wichs|first6=Daniel|volume=7237|pages=483–501|isbn=978-3-642-29010-7}}</ref> |
||
** [[Proxy re-encryption]] for BGV, BFV, and CKKS schemes<ref name=PRSV>{{cite journal |
** [[Proxy re-encryption]] for BGV, BFV, and CKKS schemes<ref name=PRSV>{{cite journal |
||
|title=Fast Proxy Re-Encryption for Publish/Subscribe Systems |
|title=Fast Proxy Re-Encryption for Publish/Subscribe Systems |
||
Line 95: | Line 95: | ||
* Digital signature<ref name=GPV>Gentry C., Peikert C., Vaikuntanathan V. [https://eprint.iacr.org/2007/432 Trapdoors for Hard Lattices and New Cryptographic Constructions], In ''STOC 2008''</ref> |
* Digital signature<ref name=GPV>Gentry C., Peikert C., Vaikuntanathan V. [https://eprint.iacr.org/2007/432 Trapdoors for Hard Lattices and New Cryptographic Constructions], In ''STOC 2008''</ref> |
||
* Identity-based encryption<ref name=GPV></ref> |
* Identity-based encryption<ref name=GPV></ref> |
||
* Ciphertext-policy attribute-based encryption<ref name=ZZ> |
* Ciphertext-policy attribute-based encryption<ref name=ZZ>{{Cite book|chapter-url=https://doi.org/10.1145/2414456.2414464|doi=10.1145/2414456.2414464|chapter=Ciphertext policy attribute-based encryption from lattices|title=Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security - ASIACCS '12|year=2012|last1=Zhang|first1=Jiang|last2=Zhang|first2=Zhenfeng|last3=Ge|first3=Aijun|page=16|isbn=9781450316484|s2cid=15973033}}</ref> |
||
== Availability == |
== Availability == |
Revision as of 11:28, 27 September 2020
Developer(s) | New Jersey Institute of Technology, Duality Technologies, Raytheon BBN Technologies, MIT, University of California, San Diego and other contributors [1] |
---|---|
Initial release | July 15, 2017 |
Stable release | 1.10.4
/ September 21, 2020 |
Preview release | 1.10.4
/ September 21, 2020 |
Repository | gitlab |
Written in | C++ |
Platform | Microsoft Windows, MacOS, Linux |
License | BSD 2-Clause |
Website | palisade-crypto |
PALISADE is an open-source cross platform software library that provides implementations of lattice cryptography building blocks and homomorphic encryption schemes.[2]
History
PALISADE adopted the open modular design principles of the predecessor SIPHER software library from the DARPA PROCEED program. SIPHER development began in 2010, with a focus on modular open design principles to support rapid application deployment over multiple FHE schemes and hardware accelerator back-ends, including on mobile, FPGA and CPU-based computing systems. PALISADE began building from earlier SIPHER designs in 2014, with an open-source release in 2017 and substantial improvements every subsequent 6 months.
PALISADE development was funded originally by the DARPA PROCEED and SafeWare programs, with subsequent improvements funded by additional DARPA programs, IARPA, the NSA, NIH, ONR, the United States Navy, the Sloan Foundation and commercial entities such as Duality Technologies. PALISADE has subsequently been used in commercial offerings, such as by Duality Technologies who raised funding in a Seed round[3] and a later Series A round [4] led by Intel Capital.
Features
PALISADE includes the following features:[5]
- Post-quantum public-key encryption
- Fully homomorphic encryption (FHE)
- Brakerski/Fan-Vercauteren (BFV) scheme[6][7] for integer arithmetic with RNS optimizations[8][9]
- Brakerski-Gentry-Vaikuntanathan (BGV) scheme[10] for integer arithmetic with RNS optimizations[11]
- Cheon-Kim-Kim-Song (CKKS) scheme[12] for real-number arithmetic with RNS optimizations[13][14][15]
- Ducas-Micciancio (FHEW) scheme[16] for Boolean circuit evaluation with optimizations[17]
- Chillotti-Gama-Georgieva-Izabachene (TFHE)[18] scheme for Boolean circuit evaluation with extensions[17]
- Multiparty extensions of FHE
- Threshold FHE for BGV, BFV, and CKKS schemes[19]
- Proxy re-encryption for BGV, BFV, and CKKS schemes[20]
- Digital signature[21]
- Identity-based encryption[21]
- Ciphertext-policy attribute-based encryption[22]
Availability
There are several known ports of PALISADE:
C++
- PALISADE Stable Release (official stable release repository)
- PALISADE Preview Release (official development/preview release repository)
Python
- Python Demos (official Python demos)
FreeBSD
- PALISADE (FreeBSD port)
References
- ^ "Community – PALISADE Homomorphic Encryption Software Library". Archived from the original on 2019-12-04. Retrieved 2019-12-11.
- ^ "PALISADE Homomorphic Encryption Software Library – An Open-Source Lattice Crypto Software Library". Archived from the original on 2019-11-16. Retrieved 2019-11-21.
- ^ "Walmart, Microsoft, AT&T-Backed Foundry Invests Millions in Encryption Pioneer". Fortune. Archived from the original on 2019-04-03. Retrieved 2019-11-21.
- ^ "Duality Technologies raises $16 million for privacy-preserving data science solutions". VentureBeat. 2019-10-30. Archived from the original on 2019-11-02. Retrieved 2019-11-21.
- ^ "PALISADE Lattice Cryptography Library Documentation". Retrieved 4 December 2019.
- ^
Fan, Junfeng; Vercauteren, Frederik (2012). "Somewhat Practical Fully Homomorphic Encryption".
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP, In CRYPTO 2012 (Springer)
- ^ Bajard JC., Eynard J., Hasan M.A., Zucca V. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes, In SAC 2016 (Springer)
- ^ Halevi S., Polyakov Y., Shoup V. An Improved RNS Variant of the BFV Homomorphic Encryption Scheme, In CT-RSA 2019 (Springer)
- ^ Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping, In ITCS 2012
- ^ Gentry, Craig; Halevi, Shai; Smart, Nigel (2012). "Homomorphic Evaluation of the AES Circuit.". Safavi-Naini R., Canetti R. (eds) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. Springer, Berlin, Heidelberg. pp. 850–867. doi:10.1007/978-3-642-32009-5_49.
- ^ Cheon, Jung Hee; Kim, Andrey; Kim, Miran; Song, Yongsoo (2017). "Homomorphic encryption for arithmetic of approximate numbers". Takagi T., Peyrin T. (eds) Advances in Cryptology – ASIACRYPT 2017. ASIACRYPT 2017. Springer, Cham. pp. 409–437. doi:10.1007/978-3-319-70694-8_15.
- ^ Cheon, Jung Hee; Han, Kyoohyung; Kim, Andrey; Kim, Miran; Song, Yongsoo (2018). "A Full RNS Variant of Approximate Homomorphic Encryption". Cid C., Jacobson Jr. M. (eds) Selected Areas in Cryptography – SAC 2018. SAC 2018. Springer, Cham. pp. 347–368. doi:10.1007/978-3-030-10970-7_16.
- ^ M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. Optimized Homomorphic Encryption Solution for Secure Genome-Wide Association Studies, 2019
- ^ Han K. and Ki D.. Better Bootstrapping for Approximate Homomorphic Encryption, In CT-RSA 2020
- ^ Ducas, Leo; Micciancio, Daniele (2015). "FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second". Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015. EUROCRYPT 2015. Springer, Berlin, Heidelberg. pp. 617–640. doi:10.1007/978-3-662-46800-5_24.
- ^ a b D. Micciancio and Y. Polyakov. Bootstrapping in FHEW-like Cryptosystems, 2020
- ^ Ilaria Chillotti; Nicolas Gama; Mariya Georgieva; Malika Izabachene. "Faster Fully Homomorphic Encryption: Bootstrapping in less than 0.1 Seconds". Retrieved 31 December 2016.
- ^ Asharov, Gilad; Jain, Abhishek; López-Alt, Adriana; Tromer, Eran; Vaikuntanathan, Vinod; Wichs, Daniel (2012). "Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE". Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science. Vol. 7237. pp. 483–501. doi:10.1007/978-3-642-29011-4_29. ISBN 978-3-642-29010-7.
- ^ Yuriy Polyakov and Kurt Rohloff and Gyana Sahu and Vinod Vaikuntanthan (2017). "Fast Proxy Re-Encryption for Publish/Subscribe Systems". ACM Transactions on Privacy and Security.
- ^ a b Gentry C., Peikert C., Vaikuntanathan V. Trapdoors for Hard Lattices and New Cryptographic Constructions, In STOC 2008
- ^ Zhang, Jiang; Zhang, Zhenfeng; Ge, Aijun (2012). "Ciphertext policy attribute-based encryption from lattices". Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security - ASIACCS '12. p. 16. doi:10.1145/2414456.2414464. ISBN 9781450316484. S2CID 15973033.