Jump to content

Artin's theorem on induced characters

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 1234qwer1234qwer4 (talk | contribs) at 21:21, 23 November 2022 (Proof: fix tag). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In representation theory, a branch of mathematics, Artin's theorem, introduced by E. Artin, states that a character on a finite group is a rational linear combination of characters induced from cyclic subgroups of the group.

There is a similar but somehow more precise theorem due to Brauer, which says that the theorem remains true if "rational" and "cyclic subgroup" are replaced with "integer" and "elementary subgroup".

Proof

References

  • Serre, Jean-Pierre (1977-09-01). Linear Representations of Finite Groups. Graduate Texts in Mathematics, 42. New York–Heidelberg: Springer-Verlag. ISBN 978-0-387-90190-9. MR 0450380. Zbl 0355.20006.

Further reading