Jump to content

Basis pursuit

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 213.55.225.100 (talk) at 15:01, 10 August 2022. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Basis pursuit is the mathematical optimization problem of the form

where x is a N-dimensional solution vector (signal), y is a M-dimensional vector of observations (measurements), A is a M × N transform matrix (usually measurement matrix) and M < N.

It is usually applied in cases where there is an underdetermined system of linear equations y = Ax that must be exactly satisfied, and the sparsest solution in the L1 sense is desired.

When it is desirable to trade off exact equality of Ax and y in exchange for a sparser x, basis pursuit denoising is preferred.

Basis pursuit is equivalent to linear programming.[1]

See also

Notes

  1. ^ A. M. Tillmann Equivalence of Linear Programming and Basis Pursuit, PAMM (Proceedings in Applied Mathematics and Mechanics) Volume 15, 2015, pp. 735-738, DOI: 10.1002/PAMM.201510351

References & further reading

  • Stephen Boyd, Lieven Vandenbergh: Convex Optimization, Cambridge University Press, 2004, ISBN 9780521833783, pp. 337–337
  • Simon Foucart, Holger Rauhut: A Mathematical Introduction to Compressive Sensing. Springer, 2013, ISBN 9780817649487, pp. 77–110