Jump to content

Bernstein's theorem (approximation theory)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by K9re11 (talk | contribs) at 14:48, 26 July 2014 (References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In approximation theory, Bernstein's theorem is a converse to Jackson's theorem.[1] The first results of this type were proved by Sergei Bernstein in 1912.[2]

For approximation by trigonometric polynomials, the result is as follows:

Let f: [0, 2π] → C be a 2π-periodic function, and assume r is a natural number, and 0 < α < 1. If there exists a number C(f) > 0 and a sequence of trigonometric polynomials {Pn}nn0 such that

then f = Pn0 + φ, where φ has a bounded r-th derivative which is α-Hölder continuous.

See also

References

  1. ^ Achieser, N.I. (1956). Theory of Approximation. New York: Frederick Ungar Publishing Co.
  2. ^ Bernstein, S.N. (1952). Collected works, 1. Moscow. pp. 11–104.{{cite book}}: CS1 maint: location missing publisher (link)