Jump to content

Cofiniteness

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 46.242.14.70 (talk) at 17:55, 23 March 2022 (Cofinite topology: Was XY=1 - clearly a typo, changed to XY=0). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but it is countable, then one says the set is cocountable.

These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum.

This use of the prefix "co" to describe a property possessed by a set's complement is consistent with its use in other terms such as "comeagre set".

Boolean algebras

The set of all subsets of that are either finite or cofinite forms a Boolean algebra, which means that it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the finite–cofinite algebra on A Boolean algebra has a unique non-principal ultrafilter (that is, a maximal filter not generated by a single element of the algebra) if and only if there exists an infinite set such that is isomorphic to the finite–cofinite algebra on In this case, the non-principal ultrafilter is the set of all cofinite sets.

Cofinite topology

The cofinite topology (sometimes called the finite complement topology) is a topology that can be defined on every set It has precisely the empty set and all cofinite subsets of as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets, or the whole of Symbolically, one writes the topology as

This topology occurs naturally in the context of the Zariski topology. Since polynomials in one variable over a field are zero on finite sets, or the whole of the Zariski topology on (considered as affine line) is the cofinite topology. The same is true for any irreducible algebraic curve; it is not true, for example, for in the plane.

Properties

  • Subspaces: Every subspace topology of the cofinite topology is also a cofinite topology.
  • Compactness: Since every open set contains all but finitely many points of the space is compact and sequentially compact.
  • Separation: The cofinite topology is the coarsest topology satisfying the T1 axiom; that is, it is the smallest topology for which every singleton set is closed. In fact, an arbitrary topology on satisfies the T1 axiom if and only if it contains the cofinite topology. If is finite then the cofinite topology is simply the discrete topology. If is not finite then this topology is not Hausdorff (T2), regular or normal because no two nonempty open sets are disjoint (that is, it is hyperconnected).

Double-pointed cofinite topology

The double-pointed cofinite topology is the cofinite topology with every point doubled; that is, it is the topological product of the cofinite topology with the indiscrete topology on a two-element set. It is not T0 or T1, since the points of the doublet are topologically indistinguishable. It is, however, R0 since the topologically distinguishable points are separable.

An example of a countable double-pointed cofinite topology is the set of even and odd integers, with a topology that groups them together. Let be the set of integers, and let be a subset of the integers whose complement is the set Define a subbase of open sets for any integer to be if is an even number, and if is odd. Then the basis sets of are generated by finite intersections, that is, for finite the open sets of the topology are

The resulting space is not T0 (and hence not T1), because the points and (for even) are topologically indistinguishable. The space is, however, a compact space, since each contains all but finitely many points.

Other examples

Product topology

The product topology on a product of topological spaces has basis where is open, and cofinitely many

The analog (without requiring that cofinitely many are the whole space) is the box topology.

Direct sum

The elements of the direct sum of modules are sequences where cofinitely many

The analog (without requiring that cofinitely many are zero) is the direct product.

See also

  • Comeagre set – "Small" subset of a topological space
  • Fréchet filter – frechet filter
  • List of topologies – List of concrete topologies and topological spaces

References

  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446 (See example 18)